• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Air-sea CO2 cycling in the southeastern Beaufort Sea

Else, Brent January 2012 (has links)
During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air–sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze–up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break–up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind–driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO2sw in Amundsen Gulf, we derived an annual budget of air–sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of air–sea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes – including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates of winter gas exchange – need to be considered in order to understand the carbon source/sink status of a given Arctic polynya region. A paradigm that considers such varied processes is useful in understanding how climate change in the Arctic can impact air–sea CO2 exchange.
2

Air-sea CO2 cycling in the southeastern Beaufort Sea

Else, Brent January 2012 (has links)
During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air–sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze–up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break–up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind–driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO2sw in Amundsen Gulf, we derived an annual budget of air–sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of air–sea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes – including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates of winter gas exchange – need to be considered in order to understand the carbon source/sink status of a given Arctic polynya region. A paradigm that considers such varied processes is useful in understanding how climate change in the Arctic can impact air–sea CO2 exchange.

Page generated in 0.0763 seconds