Spelling suggestions: "subject:"terrawater"" "subject:"watewater""
31 |
Measuring Air-Water Interfacial Area in Unsaturated Porous Media Using the Interfacial Partitioning Tracer Test MethodEl Ouni, Asma January 2013 (has links)
Interfacial partitioning tracer tests (IPTT) are one method available for measuring air-water interfacial area (A(ia)).This study used the standard approach comprising tracer injection under steady unsaturated-flow conditions with a uniform water-saturation distribution within the column. Sodium dodecylbezene sulfonate (SDBS) and pentafluorobenzoic acid (PFBA) were used as the partitioning and nonreactive tracers, respectively. Three types of porous media were used for the study: a sandy soil, a well-sorted sand, and glass beads. Initial water saturations, S(w), were approximately 80%, 80%, and 26 % for the soil, sand, and glass beads, respectively. Water saturation was monitored gravimetrically during the experiments. The maximum interfacial areas (A(ia)/(1-S(w))) calculated from the results of the experiments are compared among the three porous media used in this work, and compared to previous air-water interfacial area studies.
|
32 |
Photoreactions of Chlorophyll at the Salt Water-air InterfaceReeser, Dorea 14 July 2009 (has links)
Glancing angle laser induced fluorescence was used to monitor the kinetics of the photodegradation of chlorophyll at the surface of various salt solutions. The loss was measured using varying wavelengths of actinic radiation in the presence and absence of gas phase ozone. The loss rate of illuminated chlorophyll was faster on salt water surfaces than fresh water surfaces, both in the presence and absence of ozone. On salt water surfaces, the dependence of the loss rate on [O3(g)] was different under illuminated conditions than in the dark. This was further investigated by measuring the excitation spectra and the dependence of chlorophyll loss on the concentration of salts at the salt water surface. The possible production of reactive halogen atoms is the likely reason for the observed enhancement. The following results provide evidence of photosensitized oxidation of halogen anions, in the UV-visible range of the spectrum, resulting in halogen atom release.
|
33 |
Photoreactions of Chlorophyll at the Salt Water-air InterfaceReeser, Dorea 14 July 2009 (has links)
Glancing angle laser induced fluorescence was used to monitor the kinetics of the photodegradation of chlorophyll at the surface of various salt solutions. The loss was measured using varying wavelengths of actinic radiation in the presence and absence of gas phase ozone. The loss rate of illuminated chlorophyll was faster on salt water surfaces than fresh water surfaces, both in the presence and absence of ozone. On salt water surfaces, the dependence of the loss rate on [O3(g)] was different under illuminated conditions than in the dark. This was further investigated by measuring the excitation spectra and the dependence of chlorophyll loss on the concentration of salts at the salt water surface. The possible production of reactive halogen atoms is the likely reason for the observed enhancement. The following results provide evidence of photosensitized oxidation of halogen anions, in the UV-visible range of the spectrum, resulting in halogen atom release.
|
34 |
Experimental Study of Air-Water Flow Properties on Low-Gradient Stepped CascadesToombes, Luke Unknown Date (has links)
Stepped cascades are recognised for both aeration potential and energy dissipation, and have been employed in hydraulic structures for over 3,500 years. Yet little detailed information exists on their performance, especially pertaining to low-gradient cascades. This study presents a detailed investigation of both the macro and micro-scale flow properties on a low-gradient cascade (3.4º slope). Research is conducted on two large-size physical models: a 24m long multi-step cascade (10× 2.4m long steps), and a single-step model with identical step height and length. The large size of the model allows near full-scale data acquisition under controlled flow conditions, minimising potential scale effects. The study comprises three distinct components: 1. A global investigation of the general flow properties of nappe flow on a low-gradient, multi-step cascade. Unforeseen three-dimensional characteristics of the flow, including supercritical shockwaves and sidewall standing-waves downstream of nappe impact, are identified and examined by the study. Although comparable to similar phenomena at channel bends and expansions, these have not been previously described on stepped cascades. Energy dissipation on the cascade is investigated, and is found to be over twice that observed for a smooth chute of similar gradient. 2. A complete characterisation of the air-water structure of flow in a nappe regime. Significant outcomes of the analysis include: ⊕ Air-concentration Distribution: The air-concentration distribution at the lower nappe of the free-falling jet shows good agreement with an analytical solution of the diffusion equation. The experimental results from the study, and a reanalysis of existing data, indicate a distinct relationship between the turbulent diffusivity in the shear layer and distance from the step brink. This contradicts earlier investigations that assumed constant diffusivity. Strong aeration of the flow, with a large volume of spray, occurs downstream of the nappe impact. Depth-averaged air concentrations of 40% to 50% are observed within the spray region, decreasing towards the downstream end of the step. ⊕ Velocity Distribution: A theoretical analysis of the momentum transfer process imparts an improved understanding of the momentum transfer and velocity redistribution within the free-falling jet. An analytical solution based on twodimensional wake flow is developed, superseding existing solutions based upon a monophase free-mixing layer. ⊕ Bubble-frequency Distribution: A quasi-parabolic relationship between bubble frequency and time-average air concentration across a cross-section is observed. A theoretical explanation for the parabolic relationship is developed, and two correction factors are introduced to provide a better representation of the experimental data. ⊕ Air-bubble and Water-droplet Size Distributions: Chord-length distributions are compared with standard probability distributions, showing good agreement with standard Weibull, gamma and log-normal probability distributions within various regions of the flow on the step. A computer model is developed to model interaction between a bubbly transition from water to air and fluctuations of the free surface. 3. A parallel investigation of the oxygen aeration efficiency of a stepped cascade. Measured air-water property data is used to calculate the air-water interface area in bubbly flow, and to estimate the theoretical aeration efficiency of the stepped cascade based upon the integration of the mass transfer equation. The aeration performance of the stepped cascade model is also measured experimentally in terms of dissolved oxygen content. This analysis allows a unique, successful comparison of experimental dissolved oxygen measurements with the numerical integration of the mass transfer equation.
|
35 |
Investigating Langmuir films at the air-water interface using a planar array infrared reflection-absorption spectrographKim, Young Shin. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisors: John F. Rabolt and D. Bruce Chase, Dept. of Materials Science & Engineering. Includes bibliographical references.
|
36 |
Estabilidade linear para intermitência severa em sistemas água-ar. / Linear stability for severe slugging in air-water systems.Gabriel Romualdo de Azevedo 15 December 2017 (has links)
Apresenta-se um modelo matemático que avalia numericamente a estabilidade do estado estacionário para escoamentos água-ar em sistemas pipeline-riser de geometria variável. Uma análise a partir da teoria de estabilidade linear é aplicada a um modelo matemático adequado ao escoamento água-ar no sistema pipeline-riser. O modelo considera equações de continuidade para a fase líquida e para a fase gasosa, admite-se escoamento unidimensional e em condição isotérmica. O líquido é considerado incompressível enquanto que a fase gasosa é considerada um gás ideal. Admite-se uma equação de momento simplificada para mistura onde despreza-se a inércia (NPW - Modelo No Pressure Wave) e o padrão de escoamento local é definido com base nas condições do escoamento e na inclinação local. Assim, a intermitência severa é controlada principalmente pela gravidade no riser e pela compressibilidade do gás no pipeline. Tanto a correlação de fluxo de deriva quanto o cálculo da queda de pressão por atrito, adotados como lei de fechamento do modelo, são determinados em função do padrão de escoamento. Injeção de gás e válvula de choke são consideradas, respectivamente, na base e no topo do riser. O modelo é aplicado à sistemas pipeline-riser com escoamento água-ar citados na literatura. Os resultados da análise de estabilidade linear numérica são comparados aos resultados experimentais e numéricos apresentando uma excelente concordância. / A mathematical model that numerically evaluates the stability of the stationary state for hilly terrain air-water flows systems is presented. Numerical linear stability analysis is performed to a suitable mathematical model for the two-phase flows in a pipeline-riser system. The mathematical model considers the continuity equations for the liquid and gas phases, one-dimensional flow and isothermal conditions. The liquid is assumed incompressible while the gas phase is considered as an ideal gas. A simplified momentum equation for the mixture, neglecting inertia (NPW - No pressure wave model) is considered and the local flow pattern is defined based on the flow conditions and the local inclination. In this way, severe slugging is controlled mainly by gravity in the riser and compressibility in the pipeline. The void fraction and friction pressure drop, utilized as closure laws, are determined based on the local flow pattern. Gas injection at the bottom of the riser and a choke valve at the top are considered. The model is applied to air-water pipeline-riser systems reported in the literature. Numerical linear stability analysis results are compared with experimental and numerical results reported in the literature with excellent agreement.
|
37 |
Flow patterns in upward two-phase flow in small diameter tubesChen, Lejun January 2006 (has links)
Two-phase flow in small tubes and channels is becoming a common phenomenon in industrial processes. However, the study of two-phase flow regimes in small tubes is still at its infancy. The previous studies are reviewed and discussed in the literature section. The problems and inconsistencies encountered in the earlier studies are presented and discussed. The experimental facility is introduced in the chapters that follow. They include a section on the design of the experimental system and the test sections, the selection of the experimental parameters and the introduction of the purposely-developed programs to control the experiments and collect and process the data. The methodology of the calibration and the uncertainty analysis, the problems encountered and their solutions and the single-phase validation experiments are also described. In this project we studied the effect of tube diameter and fluid flow parameters on flow patterns in small tubes using R134a as the working fluid. The tested tube diameters were 1.10, 2.01, 2.88 and 4.26 mm; the fluid pressures were 6, 10 and 14 bar; the liquid and gas superficial velocities covered a range of 0.04-5.0 m/s and 0.01-10.0 m/s respectively. The observed flow patterns included bubbly, dispersed bubble, confined bubble, slug, chum, annular and mist flow. Twelve integrated flow maps are sketched in this report. The obtained results were compared with earlier experiments by other workers and with existing models, with obvious differences in the prediction of the transition boundaries. A set of new models and correlations were developed, based on the new data for boiling R134a presented in this thesis, to predict the effect of tube diameter and fluid properties on the transition boundaries. Some also agreed with the limited data available from earlier studies for adiabatic air-water flow in small to normal size tubes.
|
38 |
An Investigation of Chemical Landscapes in Aqueous Electrosprays by Tracking Oligomerization of IsopreneGallo Junior, Adair 12 1900 (has links)
Electrospray ionization mass spectrometry (ESIMS) is widely used to characterize
neutral and ionic species in solvents. Typically, electrical, thermal, and pneumatic
potentials are applied to create electrosprays from which charged ionic species are ejected
for downstream analysis by mass spectrometry. Most recently, ESIMS has been exploited
to investigate ambient proton transfer reactions at air-water interfaces in real time. We
assessed the validity of these experiments via complementary laboratory experiments.
Specifically, we characterized the products of two reaction scenarios via ESIMS and
proton nuclear magnetic resonance (1H-NMR): (i) emulsions of pH-adjusted water and
isoprene (C5H8) that were mechanically agitated, and (ii) electrosprays of pH-adjusted
water that were collided with gas-phase isoprene. Our experiments unambiguously
demonstrate that, while isoprene does not oligomerize in emulsions, it does undergo
protonation and oligomerization in electrosprays, both with and without pH-adjusted
water, confirming that C-C bonds form along myriad high-energy pathways during
electrospray ionization. We also compared our experimental results with some quantum
mechanics simulations of isoprene molecules interacting with hydronium at different
hydration levels (gas versus liquid phase). In agreement with our experiments, the kinetic
barriers to protonation and oligomerization of isoprene were inaccessible under ambient
conditions. Rather, the gas-phase chemistries during electrospray ionization drove the
oligomerization of isoprene. Therefore, we consider that ESIMS could induce artifacts in
interfacial reactions. These findings warrant a reassessment of previous reports on
tracking chemistries under ambient conditions at liquid-vapor interfaces via ESIMS.
Further, we took some high-speed images of electrosprays where it was possible to
observe the main characteristics of the phenomena, i.e. Taylor cone, charge separation,
and Coulomb fission. Finally, we took the freedom to speculate on possible mechanisms
that take place during electrospray ionization that affected our system and possibly may
influence other common analytical techniques on ESIMS.
|
39 |
Trubkový výměník pro ohřev oběhové vody. / Tube heat exchanger for heating water.Novotný, Roman January 2009 (has links)
Target of the master´ thesis is a design of heat exchanger air-water with the air flowing inside the pipes and with staggered pipe configuration, based on the engaged and chosen values. Next target is to determine heat exchanger with cross parallel flow and cross countercurrent flow of mediums, pressure drop on both sides air and water and dimensions of intake and outgoing gate on both sides air and water.
|
40 |
Studium vlivu příměsí na strukturní vlastnosti a stabilitu Langmuirových monovrstev mastných kyselin pomocí molekulových simulací / Molecular dynamics study of admixture influence on structural properties and stability of fatty acid Langmuir monolayersKubániová, Denisa January 2014 (has links)
Using the classical molecular dynamics simulations, the interfacial partitioning of selected aromatic species, namely benzoic acid and neutral and zwitterionic form of L-phenylalanine, was studied in the three slab systems: a) aqueous organics solution, b) palmitic acid monolayer in tilted condensed phase at aqueous organics solution and c) palmitic acid monolayer in tilted condensed - 2D gas phase coexistence at aqueous organics solution. The surface activity and the tendency to aggregate in particular at the air- aqueous and palmitic acid-aqueous interface was confirmed for all of the investigated aromatic species. The results of the simulation performed for the system of palmitic acid monolayer at benzoic acid solution were compared with the literature results of a similar simulation that employed a different parametrization. The comparison showed that the behaviour of the aromatic species at the fatty acid monolayer-aqueous interface strongly depends on the force field. The structural properties of the palmitic acid Langmuir monolayers were evaluated by means of the chain tilt angle and the headgroup region dihedral angle distributions analysis depending on the surface film density and the adsorbed aromatic species. The simulations mimicking the isothermal compression of the mixed monolayer in the...
|
Page generated in 0.0501 seconds