• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Study on Kinematics and Dynamics of Breaking Waves in Deep Water

Lim, Ho Joon 2010 August 1900 (has links)
A new measurement technique called fiber optic reflectometer (FOR) was developed to investigate multiphase flows. The principle and setup of the FOR technique were introduced and applied to various experiments. Based on the coherently mixed signal between the Fresnel reflection off the fiber-liquid interface and the scattered signal off the object, such as a gas bubble, and a solid particle, this single probe technique is capable of simultaneously measuring the velocity of the object with a high accuracy and the phase of the fluid. In addition, bubble diameter, velocity, and void fraction were measured directly. By means of a simple modification of the FOR technique, solute concentration and refractive index change were measured with a greatly improved accuracy. This modified technique was used for measuring of a NaCl concentration in deionized water to validate a new normalization technique. In the second part of this thesis, a plunging breaking wave in deep water has been studied. Using the wave focusing method, a strong plunging breaker was generated with accuracy in the deep water condition in a two-dimensional wave tank. It was possible to describe the breaking process in detail using a high speed camera with a frame rate of 500 or 1000 fps. Four kinds of experimental techniques were employed or developed to investigate the plunging breaker. Bubble image velocimetry (BIV) and particle image velocimetry (PIV) were used to measure the velocity fields. The velocity fields of the highly aerated region were obtained from the BIV measurements. In addition, the modified PIV technique is capable of measuring the velocities in the entire flow field including the aerated region. Mean and turbulent properties were obtained by the ensemble average. The mean velocity, mean vorticity, and mean kinetic energy were examined over the entire flow field. In addition, the Reynolds stresses and turbulent kinetic energy were calculated with high temporal and spatial resolutions. Free surface elevation was obtained from wave gauge measurements. BIV and PIV images were also used to obtain the free surface elevation and the boundary of the aerated region for more accurate results. The FOR technique was used to obtain the void ratio at each splash-up region. Compressibility of the plunging breaker was considered. Mass flux, momentum flux, kinetic energy, and Reynolds stresses at each FOR station were recalculated using the void ratio obtained from the FOR measurements. All terms at the first splash-up region were highly overestimated more than 100 percent unless the void ratio was applied to the calculation of fluxes and energies. Compared with the fully developed first splash-up region, the overestimation at the second and third splash-up was less significant. However, most terms were overestimated by 20~30 percent when the void ratio was not considered.
2

Advanced power cycles with mixture as the working fluid

Jonsson, Maria January 2003 (has links)
The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery. This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output. A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation. <b>Keywords:</b>power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy
3

Thermodynamic properties of humid air and their application in advanced power generation cycles

Ji, Xiaoyan January 2006 (has links)
Water or steam is added into the working fluid (often air) in gas turbines to improve the performance of gas turbine cycles. A typical application is the humidified gas turbine that has the potential to give high efficiencies, high specific power output, low emissions and low specific investment. A heat recovery system is integrated in the cycle with a humidifier for moisturizing the high-pressure air from the compressor as a kernel. Based on today’s gas turbines, the operating temperature and pressure in the humidifier are up to about 523 K and 40 bar, respectively. The operating temperature of the heat exchanger after the humidifier is up to 1773 K. The technology of water or steam addition is also used in the process of compressed air energy storage (CAES), and the operating pressure is up to 150 bar. Reliable thermodynamic properties of humid air are crucial for the process simulation and the traceable performance tests of turbomachinery and heat exchanger in the cycles. Several models have been proposed. However, the application range is limited to 400 K and 100 bar because of the limited experimental data for humid air. It is necessary to investigate the thermodynamic properties of humid air at elevated temperatures and pressures to fill in the knowledge gap. In this thesis, a new model is proposed based on the modified Redlich-Kwong equation of state in which a new cross interaction parameter between molecular oxygen and water is obtained from the fitting of the experimental data of oxygen-water system. The liquid phase is assumed to follow Henry’s law to calculate the saturated composition. The results of the new model are verified by the experimental data of nitrogen-water and oxygen-water systems from ambient temperature and pressure to 523 K and 200 bar, respectively. Properties of air-water system are predicted without any additional parameter and compared with the available experimental data to demonstrate the reliability of the new model for air-water system. The results of air-water system predicted using the new model are compared with those calculated using other real models. The comparison reveals that the new model has the same calculation accuracy as the best available model but can be used to a wider temperature and pressure range. The results of the new model are also compared with those of the ideal model and the ideal mixing model from ambient temperature and pressure to 1773 K and 200 bar to investigate the effect of the models on the thermodynamic properties of humid air. To investigate the impact of thermodynamic properties on the simulation of systems and their components, different models (ideal model, ideal mixing model and two real models) are used to calculate the thermodynamic properties of humid air in the simulation of the compressor, humidification tower, and heat exchanger in a humidified gas turbine cycle. The simulation reveals that a careful selection of a thermodynamic property model is crucial for the cycle design. The simulation results provide a useful tool for predicting the performance of the system and designing the humidified cycle components and systems. / QC 20100902
4

Advanced power cycles with mixture as the working fluid

Jonsson, Maria January 2003 (has links)
<p>The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery.</p><p>This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output.</p><p>A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation.</p><p><b>Keywords:</b>power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy</p>

Page generated in 0.218 seconds