Spelling suggestions: "subject:"west cycles""
1 |
Thermodynamic properties of humid air and their application in advanced power generation cyclesJi, Xiaoyan January 2006 (has links)
Water or steam is added into the working fluid (often air) in gas turbines to improve the performance of gas turbine cycles. A typical application is the humidified gas turbine that has the potential to give high efficiencies, high specific power output, low emissions and low specific investment. A heat recovery system is integrated in the cycle with a humidifier for moisturizing the high-pressure air from the compressor as a kernel. Based on today’s gas turbines, the operating temperature and pressure in the humidifier are up to about 523 K and 40 bar, respectively. The operating temperature of the heat exchanger after the humidifier is up to 1773 K. The technology of water or steam addition is also used in the process of compressed air energy storage (CAES), and the operating pressure is up to 150 bar. Reliable thermodynamic properties of humid air are crucial for the process simulation and the traceable performance tests of turbomachinery and heat exchanger in the cycles. Several models have been proposed. However, the application range is limited to 400 K and 100 bar because of the limited experimental data for humid air. It is necessary to investigate the thermodynamic properties of humid air at elevated temperatures and pressures to fill in the knowledge gap. In this thesis, a new model is proposed based on the modified Redlich-Kwong equation of state in which a new cross interaction parameter between molecular oxygen and water is obtained from the fitting of the experimental data of oxygen-water system. The liquid phase is assumed to follow Henry’s law to calculate the saturated composition. The results of the new model are verified by the experimental data of nitrogen-water and oxygen-water systems from ambient temperature and pressure to 523 K and 200 bar, respectively. Properties of air-water system are predicted without any additional parameter and compared with the available experimental data to demonstrate the reliability of the new model for air-water system. The results of air-water system predicted using the new model are compared with those calculated using other real models. The comparison reveals that the new model has the same calculation accuracy as the best available model but can be used to a wider temperature and pressure range. The results of the new model are also compared with those of the ideal model and the ideal mixing model from ambient temperature and pressure to 1773 K and 200 bar to investigate the effect of the models on the thermodynamic properties of humid air. To investigate the impact of thermodynamic properties on the simulation of systems and their components, different models (ideal model, ideal mixing model and two real models) are used to calculate the thermodynamic properties of humid air in the simulation of the compressor, humidification tower, and heat exchanger in a humidified gas turbine cycle. The simulation reveals that a careful selection of a thermodynamic property model is crucial for the cycle design. The simulation results provide a useful tool for predicting the performance of the system and designing the humidified cycle components and systems. / QC 20100902
|
2 |
Transfert de polluants inorganiques dans un technosol de brûlage d’armes organo-arséniées soumis à un apport de matière organique et à des cycles de saturation/désaturation : expérimentation en mésocosme / Transfer of inorganic pollutants in a burning ground for organo-arsenical ammunition submitted to an input of organic matter and to saturation/desaturation cycles : a mesocosm studyThouin, Hugues 15 December 2016 (has links)
La destruction par brûlage de munitions chimiques de la Première Guerre Mondiale a provoqué une contamination importante de la partie supérieure du sol du site de la Place-à-Gaz par l’arsenic, le zinc, le cuivre et le plomb. Le traitement thermique a eu pour effet de minéraliser l’As des agents de guerre organoarséniés, et de former un assemblage minéral inattendu composé d’arséniates de Zn, Cu et Fe, et d’une phase amorphe riche en Fe, As, Zn, Cu et Pb. Ce matériel amorphe est la principale phase porteuse de l’As et des métaux dans la zone la plus polluée. Le site est sujet à des changements environnementaux pouvant affecter la stabilité des contaminants inorganiques. Afin d’évaluer l’impact d’épisodes de saturation en eau et de l’apport de matière organique sur les cycles biogéochimiques des métaux et de l’As, une étude en mésocosme a été menée. Les résultats montrent que la phase amorphe est instable en conditions saturées, et libère des contaminants dans l’eau interstitielle du sol. Comme sur le site, les contaminants les plus mobiles sont le Zn et l’As. L’addition de matière organique a induit une immobilisation de l’As, par piégeage de l’As V sur les oxyhydroxydes de fer, dans la partie saturée du sol. La caractérisation du compartiment microbien a été effectuée via des dénombrements, une analyse de la diversité bactérienne et des tests d’activités d’oxydation de l’As III et de respiration et. Les résultats montrent que les microorganismes ont contribué activement au métabolisme du C et de l’As. L’apport de matière organique a promu la croissance des microorganismes As III-oxydants et As Vréducteurs et modifié la structure des communautés bactériennes. Cependant, un effet négatif de la matière organique sur la vitesse d’oxydation de l’As III a été observé, entrainant une augmentation des concentrations d’As III en solution. Cette étude en mésocosme a montré que le dépôt naturel de litière organique a des conséquences antagonistes sur le transfert des contaminants inorganiques. Ces résultats fournissent de plus amples informations sur l’impact environnemental de la Grande Guerre et, de façon plus générale, sur les processus biogéochimiques contrôlant le comportement des métaux/métalloïdes sur les sites pollués. / The thermal destruction of chemical munitions from World War I, on the site of “Place-à-Gaz”, induced intense local top soil contamination by arsenic and heavy metals. The heat treatment mineralized As from organoarsenic warfare agents, resulting in a singular mineral assemblage, composed of Zn, Cu and Fe arsenates and of an amorphous phase rich in Fe, As, Zn, Cu and Pb. The amorphous material was the principal carrier of As and metals in the central part of the site. The site undergoes environmental changes which may alter the stability of inorganic contaminants. To assess the impact of water saturation episodes and input of bioavailable organic matter on the biogeochemical cycles of metal(loid)s, a mesocosm study was conducted. Results showed that amorphous phase was instable in saturated conditions, and released contaminants in soil water. As previously observed on site, the most mobile contaminants were Zn and As. The addition of organic matter induced the immobilization of As by trapping of As V onto hydrous ferric oxides in the saturated soil. Microbial characterizations including counting, bacterial community structure, respiration, and determination of As IIIoxidizing activities were performed. Results showed that microorganisms actively contribute to the metabolisms of C and As.The addition of organic matter induced the increase of As III-oxidizing and As V-reducing microorganisms concentrations and modified the bacterial diversity. However, a negative effect of organic matter on the activity of As III oxidation was observed resulting in higher As III concentration in soil water. This study showed that the natural deposition of forest organic litter on the site, induced antagonist effects on the transfer of inorganic pollutants did not immobilize all the Zn and As and even contributed to As III transport to the surrounding environment. These results provide more information about the environmental impact of the Great War and more generally about the processes driving the behavior of metals/metalloids on polluted sites.
|
Page generated in 0.0659 seconds