Spelling suggestions: "subject:"aircraft design"" "subject:"ircraft design""
51 |
Optimal Geometric Trimming of B-spline Surfaces for Aircraft DesignZhang, Xinyu 22 July 2005 (has links)
B-spline surfaces have been widely used in aircraft design to represent different types of components in a uniform format. Unlike the visual trimming of B-spline surfaces, which hides unwanted portions in rendering, the geometric trimming approach provides a mathematically clean representation. This dissertation focuses on the geometric trimming of fuselage and wing components represented by B-spline surfaces.
To trim two intersecting surfaces requires finding their intersections effectively. Most of the existing algorithms focus on providing intersections suitable for rendering. In this dissertation, an intersection algorithm suitable for geometric trimming of B-spline surfaces is presented. The number of intersection points depends on the number of isoparametric curves selected, and thus is controllable and independent of the error bound of intersection points.
Trimming curves are classified and a new scheme for trimming by a closed trimming curve is provided to improve the accuracy. The surface trimmed by a closed trimming curve is subdivided into four patches and the trimming curve is converted into two open trimming curves. Two surface patches are created by knot insertion, which match the original surface exactly. The other two surface patches are trimmed by the converted open trimming curves. Factors affecting the trimming process are discussed and metrics are provided to measure trimming errors.
Exact trimming is precluded due to the high degree of intersections. The process may lead to significant deviation from the corresponding portion on the original surface. Optimizations are employed to minimize approximation errors and obtain higher accuracy. The hybrid Parallel Tempering and Simulated Annealing optimization method, which is an effective algorithm to overcome the slow convergence waiting dilemma and initial value sensitivity, is applied for the minimization of B-spline surface representation errors. The results confirm that trimming errors are successfully reduced. / Ph. D.
|
52 |
Multidisciplinary Design Optimization of Subsonic Fixed-Wing Unmanned Aerial Vehicles Projected Through 2025Gundlach, John Frederick 30 April 2004 (has links)
Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: 1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, 2) UAV systems mass properties definition, 3) wing structural weight methods, 4) self-optimizing flight performance model, 5) automated geometry algorithms, and 6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy.
The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. Technology impacts on the design of the three UAV classes are evaluated from a representative system technology year through 2025. Avionics, subsystems, aerodynamics, design, payloads, propulsion, and structures technology trends are assembled or derived from a variety of sources. The technology investigation serves the purposes of validating the effectiveness of the integrated AV design methods and to highlight design implications of technology insertion through future years. Flight performance, payload performance, and other attributes within a vehicle family are fixed such that the changes in the AV designs represent technology differences alone, and not requirements evolution. The optimizer seeks to minimize AV design gross weight for a given mission requirement and technology set.
All three UAV families show significant design gross weight reductions as technology improves. The predicted design gross weight in 2025 for each class is: 1) 12.9% relative to the 1994 Global Hawk, 2) 6.26% relative to the 1994 Predator, and 3) 26.3% relative to the 2000 Shadow 200. The degree of technology improvement and ranking of contributing technologies differs among the vehicle families. The design gross weight is sensitive to technologies that directly affect the non-varying weights for all cases, especially payload and avionics/subsystems technologies. Additionally, the propulsion technology strongly affects the high performance Global Hawk and Predator families, which have high fuel mass fractions relative to the Tactical Shadow 200 family. The overall technology synergy experienced 10-11 years after the initial technology year is 6.68% for Global Hawk, 7.09% for Predator, and 4.22% for the Shadow 200, which means that the technology trends interact favorably in all cases. The Global Hawk and Shadow 200 families exhibited niche behavior, where some vehicles attained higher aerodynamic performance while others attained lower structural mass fractions. The high aerodynamic performance Global Hawk vehicles had high aspect ratio wings with sweep, while the low structural mass fraction vehicles had straight, relatively low aspect ratios and smaller wing spans. The high aerodynamic performance Shadow 200 vehicles had relatively low wing loadings and large wing spans, while the lower structural mass fraction counterparts sought to minimize physical size. / Ph. D.
|
53 |
Interference Drag Due to Engine Nacelle Location for a Single-Aisle, Transonic AircraftBlaesser, Nathaniel James 15 January 2020 (has links)
This investigation sought first to determine the feasibility of generating a surrogate model of the interference drag between nacelles and wing-fuselage systems suitable for the inclusion in a multidisciplinary design optimization (MDO) framework. The target aircraft was a single-aisle, transonic aircraft with a freestream Mach number of 0.8 at 35,000 feet and a design lift coefficient of 0.5. Using an MDO framework is necessary for placing the nacelle because of the competing objectives of the disciplines involved in aircraft design including structures, acoustics, and aerodynamics. A secondary goal was to determine what tools are necessary for accurately capturing interference drag effects on the system. This research used both Euler computational fluid dynamics (CFD) with a coupled viscous drag estimation tool and Reynolds Averaged Navier-Stokes (RANS) CFD to estimate the system drag. The initial trade space exploration that varied the nacelle location across a baseline airframe configuration was completed with the Euler solver, and it showed that appreciable overlap between the wing and nacelle led to large increases in interference drag. A follow-on study was conducted with RANS CFD where the wing shape was tailored for each unique nacelle position. In comparing the results of the Euler and the RANS CFD, it was determined that RANS is required to accurately capture the flow features. Euler solvers can create artifacts due to the lack of viscous effects within the model. Wing tailoring is necessary because of the sensitivity of transonic flows to geometric changes and the addition of neighboring components, such as a nacelle. The research showed that for above and aft wing locations, a nacelle can overlap the trailing edge without incurring a drag penalty. Nacelles placed in the conventional location, forward and beneath the wing, displayed low interference drag effects, as the nacelle had a small and local impact on the wing's aerodynamics. Given the high cost of computing a RANS solution with wing tailoring, and the large design space for nacelle locations, building a surrogate model for interference drag was found to be prohibitive at this time. As the cost of computing and mesh generation decreases, collecting the data for building a surrogate model may become tractable. / Doctor of Philosophy / Engine placement on an aircraft is dependent on multiple disciplines. Engine placement affects the noise of the aircraft because the wing can shield or reflect the engine noise. Engine placement impacts the structural loads of an aircraft, with some positions requiring more reinforcement that adds to the cost and weight of the aircraft. Aerodynamically, the engine placement impacts the vehicle's drag. Taken together, the only means of trading the different disciplines' needs is through a multidisciplinary design optimization (MDO) framework. The challenge of MDO frameworks is that they require numerous solutions to effectively explore the trade space. Thus, MDO frameworks employ fast, low-order tools to compute hundreds or thousands of different combinations of features. A common approach to make running MDO analysis feasible is to develop surrogate models of the key considerations. Current aerodynamic drag build-ups for aircraft do not consider the interference drag associated with engine placement. The first goal of this research was to determine the feasibility of generating a surrogate model for inclusion in an MDO framework. In order to collect the data required for the surrogate, appropriate tools to capture the interference drag are required. Building a surrogate requires a large number of samples, thus the aerodynamic solver must be fast, robust, and accurate.
An Euler (inviscid) computational fluid dynamics (CFD) was used do explore the engine placement design space to test the feasibility of building the surrogate model. The target aircraft was a single-aisle, transonic aircraft with a freestream Mach number of 0.8, flying at an altitude of 35,000 feet and a design lift coefficient of 0.5. The initial vehicle used a baseline wing, and the engine placement was varied across the wing span and fuselage. The results showed that the conventional location, where the engine is forward and beneath the wing, had the a modestly beneficial interference drag, though positions near the trailing edge and above the wing also showed neutral interference drag. In general, if the engine overlapped the wing, the interference drag increased dramatically.
A follow-on study used Reynolds Averaged Navier-Stokes (RANS) CFD to investigate seven engine placements above and aft of the wing. Each of these positions had the wing tailored such that the wing performance would be typical of a good transonic wing. The results showed that with wing tailoring, a moderate amount of overlap between the wing and nacelle results in reduced or neutral interference drag. This is in contrast with the baseline wing results that showed moderate overlap led to large increases in interference drag.
The results from this research suggest that building a surrogate model of interference drag for transonic aircraft is not feasible given today's computational resources. In order to accurately model the interference drag, one must use a RANS CFD solver and tailor the wing. These requirements increase the cost of evaluating an engine position such that collecting enough for a surrogate model is prohibitively expensive. As computational speeds increase, and the ability to automate CFD mesh generation becomes less time intensive, the feasibility may increase. Using an Euler solver is insufficient because of the lack of viscous effects in the flow. The lack of a boundary layer leads to artifacts appearing in the flow when the nacelle and wing are in close proximity.
|
54 |
Design Optimization of a Regional Transport Aircraft with Hybrid Electric Distributed Propulsion SystemsRajkumar, Vishnu Ganesh 03 August 2018 (has links)
In recent years, there has been a growing shift in the world towards sustainability. For civil aviation, this is reflected in the goals of several organizations including NASA and ACARE as significantly increased fuel efficiency along with reduced harmful emissions in the atmosphere. Achieving the goals necessitates the advent of novel and radical aircraft technologies, NASA's X-57, is one such concept using distributed electric propulsion (DEP) technology.
Although practical implementation of DEP is achievable due to the scale invariance of highly efficient electric motors, the current battery technology restricts its adoption for commercial transport aircraft. A Hybrid Electric Distributed Propulsion (HEDiP) system offers a promising alternative to the all-electric system. It leverages the benefits of DEP when coupled with a hybrid electric system. One of the areas needing improvement in HEDiP aircraft design is the fast and accurate estimation of wing aerodynamic characteristics in the presence of multiple propellers. A VLM based estimation technique was developed to address this requirement.
This research is primarily motivated by the need to have mature conceptual design methods for HEDiP aircraft. Therefore, the overall research objective is to develop an effective conceptual design capability based on a proven multidisciplinary design optimization (MDO) framework, and to demonstrate the resulting capability by applying it to the conceptual design of a regional transport aircraft (RTA) with HEDiP systems. / Master of Science / Recent years have seen a growing movement to steer the world towards sustainability. For civil aviation, this is reflected in the goals of key organizations, such as NASA and ACARE, to significantly improve fuel efficiency, reduce harmful emissions, and decrease direct heat release in the atmosphere. Achieving such goals requires novel technologies along with radical aircraft concepts driven by efficiency maximization as well as using energy sources other than fossil fuel. NASA’s all-electric X-57 is one such concept using the Distributed Electric Propulsion (DEP) technology with multiple electric motors and propellers placed on the wing. However, today’s all-electric aircraft suffer from the heavy weight penalty associated with batteries to power electric motors. In the near term, a Hybrid Electric Distributed Propulsion (HEDiP) system offers a promising alternative. HEDiP combines distributed propulsion (DiP) technology powered by a mix of two energy sources, battery and fossil fuel. The overall goal of the present study is to investigate potential benefits of HEDiP systems for the design of optimal regional transport aircraft (RTA).
To perform this study, the aerodynamics module of the Pacelab Aircraft Preliminary Design (APD) software system was modified to account for changes in wing aerodynamics due to the interaction with multiple propellers. This required the development of the Wing Aerodynamic Simulation with Propeller Effects (WASPE) code. In addition, a Wing Propeller Configuration Optimization (WIPCO) code was developed to optimize the placement of propellers based on location, number, and direction of rotation. The updated APD was applied to develop the HERMiT 2E series of RTA. The results demonstrated the anticipated benefits of HEDiP technologies over conventional aircraft, and provided a better understanding of the sensitivity of RTA designs to battery technology and level of hybridization, i.e., power split between batteries and fossil fuels. The HERMiT 6E/I was then designed to quantify the benefits of HEDiP systems over a baseline Twin Otter aircraft. The results showed that a comparable performance could be obtained with more than 50% saving in mission energy costs for a small weight penalty. The HERMiT 6E/I also requires only about 38% of the mission fuel borne by the baseline. This means a correspondingly lower direct atmospheric heat release, reduction in carbon dioxide and NOx emissions along with reduced energy consumptions.
|
55 |
Regional Transport Aircraft Design using Turbo Electric Distributed Propulsion (TEDiP) SystemPolepeddi, Vachaspathy 06 July 2022 (has links)
As the world moves towards environmental sustainability, the civil aviation enterprise has responded by setting challenging goals for significantly increased energy efficiency and reduced harmful emissions into the atmosphere as codified by National Aeronautics and Space Administration (NASA) and Advisory Council for Aircraft Innovation and Research in Europe (ACARE). The airline industry supports these goals because of their positive impact on operational cost and the environment. Achieving such goals requires introduction of novel technologies and aircraft concepts. Previous studies have shown that electrified aircraft can be effective in meeting these challenges.While there are several mechanisms to incorporate novel technologies for electrified aircraft, two such technologies: turbo-electric propulsion and distributed propulsion, are used in this research. Integration of these two technologies with the airframe leverages the well-known favorable interference between the wing and the tractor propeller wake to provide increased lift during takeoff.In the present research, the advantages and disadvantages of integrating a turbo-electric distributed propulsion (TEDiP) system are assessed for a regional transport aircraft (RTA). With near term motor technology, an improvement in trip fuel burn was observed on the four and six propeller variants of the TEDiP aircraft. The takeoff field length(TOFL) also improved in all three design variants which is a direct result of the working of distributed propulsion leading to better aerodynamic performance at takeoff conditions.The approach and findings for this research are reported in this thesis. / Master of Science / While air transportation system is considered the fastest means to travel, the avi-ation industry is responsible for 2.1% of all human-induced CO2 emissions, whichputs a renewed emphasis on environmental sustainability. There is heightenedinterest in exploring alternative propulsion technologies for aviation to mitigatethe effects of ever increasing demand for air travel coupled with fossil fuel pricevolatility.Ambitious plans have been outlined by leading aerospace organizations to reduceharmful emissions into the atmosphere. Achieving these ambitious goals requiresdevelopment and introduction of game changing technologies and aircraft con-cepts. Few such concepts include novel propulsion systems like all electric andhybrid-electric propulsion, distributed propulsion, and boundary layer ingestion.The X-57 is a novel all-electric aircraft being developed by NASA as a technologydemonstrator and makes use of multiple electric motors and propellers placedon the wing.Owing to battery technology limitations, all-electric and hybrid-electric propul-sion are not considered as viable options. In the near term, incorporatingdistributed propulsion alongside turbo-electric propulsion, for a Turbo-ElectricDistributed Propulsion(TEDiP) system may be a promising option in the near--to-mid-term. The overall goal of the present study is to investigate potentialbenefits and penalties of TEDiP systems for regional transport aircraft (RTA).To perform this study, the aerodynamics module of Pacelab Aircraft PreliminaryDesign (APD) Multi-Disciplinary Optimization (MDAO) framework is alteredto account for changes in wing-propeller aerodynamics due to the interactionof wing and multiple propellers. This required selection of a cost-effective toolthat captures aerodynamic data for multiple propellers and wing. VSPAEROis the aerodynamic tool of choice for this research. Aerodynamic data fromVSPAERO is coupled to APD and three TEDiP design variants with four, sixand eight propeller are designed with the ATR 72-500 as the baseline. Thebenefits and penalties of integrating the TEDiP system onto these variants isinvestigatedThe results show that a performance comparable to the baseline can be achievedin the near term with the four propeller variant even with current electricalsystems technology trends with a small weight penalty, and in the medium termon a six propeller variant. A decrease in trip fuel burn and improved takeofffield length(TOFL) performance justifies the usage of TEDiP systems.
|
56 |
The Effect of Reducing Cruise Altitude on the Topology and Emissions of a Commercial Transport AircraftMcDonald, Melea E. 02 September 2010 (has links)
In recent years, research has been conducted for alternative commercial transonic aircraft design configurations, such as the strut- braced wing and the truss-braced wing aircraft designs, in order to improve aircraft performance and reduce the impact of aircraft emissions as compared to a typical cantilever wing design. Research performed by Virginia Tech in conjunction with NASA Langley Research Center shows that these alternative configurations result in 20% or more reduction in fuel consumption, and thus emissions. Another option to reduce the impact of emissions on the environment is to reduce the aircraft cruise altitude, where less nitrous oxides are released into the atmosphere and contrail formation is less likely. The following study was performed using multidisciplinary design optimization (MDO) in ModelCenterTM for cantilever wing, strut-braced wing, and truss-braced wing designs and optimized for minimum takeoff gross weight at 7730 NM range and minimum fuel weight for 7730 and 4000 NM range at the following cruise altitudes: 25,000; 30,000; and 35,000 ft. For the longer range, both objective functions exhibit a large penalty in fuel weight and takeoff gross weight due to the increased drag from the fixed fuselage when reducing cruise altitude. For the shorter range, there was a slight increase in takeoff gross weight even though there was a large increase in fuel weight for decreased cruise altitudes. Thus, the benefits of reducing cruise altitude were offset by increased fuel weight. Either a two-jury truss-braced wing or telescopic strut could be studied to reduce the fuel penalty. / Master of Science
|
57 |
Structural Optimization and Design of a Strut-Braced Wing AircraftNaghshineh-Pour, Amir H. 15 December 1998 (has links)
A significant improvement can be achieved in the performance of transonic transport aircraft using Multidisciplinary Design Optimization (MDO) by implementing truss-braced wing concepts in combination with other advanced technologies and novel design innovations. A considerable reduction in drag can be obtained by using a high aspect ratio wing with thin airfoil sections and tip-mounted engines. However, such wing structures could suffer from a significant weight penalty. Thus, the use of an external strut or a truss bracing is promising for weight reduction.
Due to the unconventional nature of the proposed concept, commonly available wing weight equations for transport aircraft will not be sufficiently accurate. Hence, a bending material weight calculation procedure was developed to take into account the influence of the strut upon the wing weight, and this was coupled to the Flight Optimization System (FLOPS) for total wing weight estimation. The wing bending material weight for single-strut configurations is estimated by modeling the wing structure as an idealized double-plate model using a piecewise linear load method.
Two maneuver load conditions 2.5g and -1.0g factor of safety of 1.5 and a 2.0g taxi bump are considered as the critical load conditions to determine the wing bending material weight. From preliminary analyses, the buckling of the strut under the -1.0g load condition proved to be the critical structural challenge. To address this issue, an innovative design strategy introduces a telescoping sleeve mechanism to allow the strut to be inactive during negative g maneuvers and active during positive g maneuvers. Also, more wing weight reduction is obtained by optimizing the strut force, a strut offset length, and the wing-strut junction location. The best configuration shows a 9.2% savings in takeoff gross weight, an 18.2% savings in wing weight and a 15.4% savings in fuel weight compared to a cantilever wing counterpart. / Master of Science
|
58 |
A systematic approach to design for lifelong aircraft evolutionLim, Dongwook 06 April 2009 (has links)
Modern aerospace systems rely heavily on legacy platforms and their derivatives. Historical examples show that after a vehicle design is frozen and delivered to a customer, successive upgrades are often made to fulfill changing requirements. Current practices of adapting to emerging needs with derivative designs, retrofits, and upgrades are often reactive and ad-hoc, resulting in performance and cost penalties. Recent DoD acquisition policies have addressed this problem by establishing a general paradigm for design for lifelong evolution. However, there is a need for a unified, practical design approach that considers the lifetime evolution of an aircraft concept by incorporating future requirements and technologies.
This research proposes a systematic approach with which the decision makers can evaluate the value and risk of a new aircraft development program, including potential derivative development opportunities. The proposed Evaluation of Lifelong Vehicle Evolution (EvoLVE) method is a two- or multi-stage representation of the aircraft design process that accommodates initial development phases as well as follow-on phases. One of the key elements of this method is the Stochastic Programming with Recourse (SPR) technique, which accounts for uncertainties associated with future requirements. The remedial approach of SPR in its two distinctive problem-solving steps is well suited to aircraft design problems where derivatives, retrofits, and upgrades have been used to fix designs that were once but no longer optimal. The solution approach of SPR is complemented by the Risk-Averse Strategy Selection (RASS) technique to gauge risk associated with vehicle evolution options. In the absence of a full description of the random space, a scenario-based approach captures the randomness with a few probable scenarios and reveals implications of different future events. Last, an interactive framework for decision-making support allows simultaneous navigation of the current and future design space with a greater degree of freedom. A cantilevered beam design problem was set up and solved using the SPR technique to showcase its application to an engineering design setting. The full EvoLVE method was conducted on a notional multi-role fighter based on the F/A-18 Hornet.
|
59 |
The airfoil thickness effects on wavy leading edge phenomena at low Reynolds number regime. / Os efeitos da espessura de aerofólio nos fenômenos de bordo de ataque ondulado a regime de baixo número de Reynolds.Paula, Adson Agrico de 29 April 2016 (has links)
Recently, the wavy leading edge airfoils, inspired by the humpback whale´s flipper, have been investigated, as flow control mechanisms, at low Reynolds numbers in order to improve aerodynamic performance in this particular flow regime. The overall aim of this work is to investigate the airfoil geometric effects on wavy leading edge phenomena in the low Reynolds number regime. Experimental investigations were carried out correlating force measurements with mini-tuft and oil visualizations in order to understand the airfoil thickness effects on wavy leading edge phenomena. Three sets of airfoil thickness were tested (NACA 0012, NACA 0020 and NACA 0030), each set consisting of smooth plus three wavy configurations (A=0.11c, ?=0.40c; A=0.03c, ?=0.40c and A=0.03c, ?=0.11c); Reynolds number was varied between 50,000 and 290,000. The results present many findings that were not possible in previous studies due the fact that these investigations were constrained to specific geometries and/or flow conditions. At higher Reynolds number, the decrease in airfoil thickness leads the airfoils to leading edge stall characteristics causing the lowest aerodynamic deterioration for the thinnest wavy airfoil as compared to smooth configuration in the pre-stall regime. In addition, the results show impressive tubercle performance in the lowest Reynolds number. For any tubercle geometry and airfoil thickness, the wavy leading edge airfoils present higher maximum lift values as compared to smooth configurations showing an unprecedented increase in performance for a full-span model tested in the literature. The flow visualizations present two flow mechanisms triggered by secondary flow: three-dimensional laminar separation bubbles and vortical structures. Regarding three-dimensional laminar bubbles, the results confirm some of the few previous experimental and numerical studies, and presents for the first time these structures as a very efficient flow control mechanism in the post-stall regime justifying the impressive increase in maximum lift in the lowest Reynolds number. Besides that, two characteristics of laminar bubbles, \"tipped-bubbles\" and \"elongated-bubbles\", are identified with different effects in the pre-stall regime. This thesis presents higher tubercle performance for thinner airfoils (NACA 0012) and/or lower Reynolds number conditions (Re=50,000) showing clearly that an optimum performance lead the \"tubercles\" to operate under conditions of leading edge flow separation conditions. Therefore, a design space for tubercles conducted to leading edge stall characteristics confirming the hypothesis of Stanway (2008) eight years before. / Recentemente, aerofólios com bordo de ataque ondulados, inspirados na nadadeira da baleia jubarte, tem sido investigados como mecanismo de controle de escoamento para baixo número de Reynolds com a finalidade de se aumentar o desempenho aerodinâmico neste específico regime de escoamento. O objetivo geral deste trabalho é investigar os efeitos geométricos do aerofólio nos fenômenos do bordo de ataque ondulado na condição de baixo número de Reynolds. Investigações experimentais foram realizadas correlacionando medições de forças com visualizações de lã e óleo a fim de compreender os efeitos da espessura do aerofólio sobre os fenômenos de bordo de ataque ondulado. Três conjuntos de espessura de aerofólios foram testados (NACA 0012, NACA 0020 e NACA 0030) na faixa de número de Reynolds entre 50,000 e 290,000, onde cada conjunto tem um aerofólio liso e três ondulados (A = 0.11c, ? = 0.40c; A = 0.03c, ? = 0.40c e A = 0.03c, 0.11c ? =0.11c). O dados experimentais mostram importantes resultados que não foram possíveis em estudos anteriores devido às investigações serem restritas à geometria ou/e condição de escoamento específicas. O resultados de medida de força mostram que a diminuição da espessura do aerofólio conduz às características de separação de escoamento de bordo de ataque que causam menor deterioração aerodinâmica nos aerofólios ondulados finos quando comparados aos lisos no regime de pré-stall. Além disso, os resultados mostram um desempenho destacado do bordo de ataque ondulado para condição de menor número de Reynolds. Em quaisquer espessuras de aerofólio, os bordos ondulados apresentam valores de sustentação máxima maiores quando comparado aos aerofólios lisos mostrando assim resultado inédito na literatura para modelos ondulados bi-dimensionais. As visualizações de óleo evidenciaram dois mecanismos de controle de escoamento desencadeadas pelo escoamento secundário: bolhas de separação laminar tridimensionais e estruturas vorticais. Os resultados confirmam alguns poucos estudos experimentais e numéricos anteriores relacionadas com bolhas tridimensionais, e apresenta pela primeira vez estas estruturas como um mecanismo muito eficiente de controle de escoamento em regime de pós-stall justificando o aumento de máxima sustentação para o menor número de Reynolds. Adicionalmente, foram identificadas duas estruturas de bolhas tridimensionais nomeados aqui como \"bolhas com pontas\" e \"bolhas alongadas\" que causam distintos efeitos no regime de pré-stall. Esta tese apresenta como resultado maior desempenho para aerofólios ondulados com menor espessura (NACA 0012) e/ou para condições de menor número de Reynolds (Re=50,000)mostrando claramente que estas características levam as ondulações a operarem em condições de stall de bordo de ataque assim tendo um desempenho superior. Portanto, um espaço de projeto para tubérculos conduz às características de stall de bordo de ataque confirmando a suposição de Stanway (2008) oitos anos antes.
|
60 |
Model Based Aircraft Control System Design and SimulationM Venkata, Raghu Chaitanya January 2009 (has links)
<p>Development of modern aircraft has become more and more expensive and time consuming. In order to minimize the development cost, an improvement of the conceptual design phase is needed. The desired goal of the project is to enhance the functionality of an in house produced framework conducted at the department of machine design, consisting of parametric models representing a large variety of aircraft concepts.</p><p>The first part of the work consists of the construction of geometric aircraft control surfaces such as flaps, aileron, rudder and elevator parametrically in CATIA V5.</p><p>The second part of the work involves designing and simulating an Inverse dynamic model in Dymola software.</p><p>An Excel interface has been developed between CATIA and Dymola. Parameters can be varied in the interface as per user specification; these values are sent to CATIA or Dymola and vice versa. The constructed concept model of control surfaces has been tested for different aircraft shapes and layout. The simulation has been done in Dymola for the control surfaces.</p>
|
Page generated in 0.0324 seconds