Spelling suggestions: "subject:"airfare tickets"" "subject:"airfare rickets""
1 |
Prediktion av optimal tidpunkt för köp av flygbiljetter med hjälp av maskininlärning / Prediction of optimal purchase time of airline tickets using machine learningJacobsson, Marcus, Inkapööl, Viktor January 2020 (has links)
The work presented in this study is based on the desire of cutting consumer costs related to purchase of airfare tickets. In detail, the study has investigated whether it is possible to classify optimal purchase decisions for specific flight routes with high accuracy using machine learning models trained with basic data containing only price and search date for a given date of departure. The models were based on Random Forest Classifier and trained on search data up to 90 days ahead of every leave date in July 2016-2018, and tested on the same kind of data for 2019. After preparation of data and tuning of hyperparameters the final models managed to correctly classify optimal purchase with an accuracy of 88% for the trip Stockholm-Mallorca and 84% for the trip Stockholm-Bangkok. Based on the assumption that the number of searches correlates with demand and in turn actual purchases, the study calculated the average expected savings per ticket using the model on the specific routes to be 21% and 17% respectively. Furthermore, the study has also examined how a business model for price comparison could be reshaped to incorporate these findings. The framework was set up using Business Model Canvas and resulted in the recommendation of implementing a premium service where users would be given the information wether to buy or wait based on a search. / Arbetet presenterat i studien är baserat på målet att sänka konsumentkostnader relaterat till köp av flygresor. Mer specifikt har studien undersökt huruvida det är möjligt att predicera optimala köpbeslut för specifika flygrutter med hjälp av maskininlärningsmodeller tränade på grundläggande data innehållande endast information om pris och sökdatum för varje givet avresedatum. Modellerna baserades på Random Forest Classifier och tränades på sökdata upp till 90 dagar före avresa för varje avresedag i juli 2016–2018, och testades på likadan data för 2019. Efter förberedelse av data och tuning av hyperparametrar lyckades modellerna med en träffsäkerhet på 88% respektive 84% predicera optimalt köp för rutterna Stockholm-Mallorca respektive Stockholm-Bangkok. Baserat på antagande om att antalet sökningar korrelerar med efterfrågan och vidare faktiska köp, beräknade studien att den genomsnittliga förväntade besparingen per biljett vid användning av modeller på de undersökta rutterna till 21% respektive 17%. Vidare undersökte studien hur en affärsmodell för prisjämförelse kan omformas för att inkorporera resultaten. Ramverkat som användes för detta var Business Model Canvas och mynnade ut i en rekommendation av implementering av en premiumtjänst genom vilken användare ges information biljett ska köpas eller ej vid en given sökning.
|
Page generated in 0.0436 seconds