• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation and function of miR-199-3p in murine and human cytomegalovirus infections

Laqtom, Nouf Nasser Mohammad January 2013 (has links)
Human Cytomegalovirus (HCMV), the prototypic β-herpesvirus, is the most common cause of congenital infections as well as morbidity and mortality in immunocompromised patients. The anti-HCMV drugs currently available have a number of drawbacks (i.e. detrimental side-effects and/or the appearance of drug resistant strains), which limit their clinical usefulness. Therefore, a better understanding of host-virus interactions is important to develop new, safe and effective ways to treat HCMV. HCMV has evolved various strategies to make the host cell more conducive for the replication process, many of these involve modulation of host signalling pathways through proteins or non-coding RNAs. The focus of this thesis is on the regulation of one class of non-coding RNA, microRNAs (miRNA) by HCMV as well as murine CMV (MCMV). miRNAs are short ~22 nucleotide RNA sequences, which negatively regulate the stability and translational efficiency of specific target messenger RNAs (mRNAs). It has been previously shown that three host-encoded miRNAs, miR-199-3p, miR-199-5p and miR-214, are down-regulated in both MCMV and HCMV infected cells. Despite the biological and genomic differences between the two viruses, this down-regulation occurs in both infections, suggesting a possible conserved antiviral role of the miRNAs in mouse and human cells. Consistent with this, miR-199-3p and miR-214 manifest antiviral properties against MCMV and HCMV when over-expressed in vitro. This thesis investigates two hypotheses: 1) CMV down-regulates the expression of these host miRNAs through a mechanism involving viral factors, 2) The down-regulation of miR-199-3p leads to the up-regulation of its targets and this influences the cell in a way that favours some aspect of the viral life cycle. The first part of this project examined the regulation of miR-199-3p, miR-199-5p, and miR-214, which derive from a single primary transcript (pri-miRNA). The down-regulation of all three miRNAs was found to occur at the transcriptional level by 4 hours post infection. The promoter of the miR-199a/214 cluster was therefore cloned into a reporter vector in order to interrogate the factors regulating transcription of pri-miRNA in infection; this was carried out in the murine model based on availability of reagents. The reduction in the pri-miRNA was found to correlate with a decrease in the transcriptional activity of miR-199a/214 promoter in infected cells. Further analysis revealed the presence of a sequence between -421 to -273 relative to the transcription start site (TSS) that was critical for promoter activity. This sequence contains a putative serum response element (SRE), which includes two binding sites for the SRF dimer (serum response factor) and a binding site for a molecule of TCF (ternary complex factor), ELK-1. Initial knock-down studies suggest that these transcription factors are required for basal activity but it remains unknown whether they are involved in the differential expression of miR-199a/214 observed during infection. Another binding site for the transcription factor TWIST-1 was found outside this region, which is known to regulate the miR-199a/214 cluster in other cell types. Western blot analysis showed reduced expression of TWIST-1 in cells infected with HCMV and MCMV infections, by 24 and 48 hours, respectively, suggesting a role of TWIST-1 in regulating miR-199a/214 cluster during these infections. This regulation seems to be dependent on viral gene expression, as a replication deficient viral mutant fails to repress the promoter function and subsequent pri-miRNA production. Taken together, these results suggest an active viral mechanism for transcriptional repression of the miR-199a/214 promoter. To understand the antiviral function of miR-199-3p, the second part of this thesis examined whether miR-199-3p regulates host signalling pathways important for CMV replication and/or the life cycle. A microarray analysis was carried out with samples from cells transfected with miR- 199-3p mimic versus inhibitor. This revealed 198 genes significantly down-regulated by the miRNA. From the 198 genes, Ingenuity pathway analysis (IPA) software identified several host pathways with a potential role in HCMV infection including: PI3K/AKT signalling, the ERK-MAPK cascade, and prostaglandin production. This thesis examined the role of miR-199-3p in regulating the PI3K/AKT pathway in HCMV infection. It was found that miR-199-3p modulates the phosphorylation of the central regulator of PI3K/AKT signalling, AKT. Transfection of miR-199-3p before the infection impedes the complete phosphorylation of AKT, which is known to be required for the immediate early viral gene expression and replication. This provides an explanation for the antiviral function of miR-199-3p, through its ability to modulate AKT phosphorylation. An open question, however, is how the natural down-regulation of miR-199-3p from 24 to 72 hours post infection naturally affects AKT phosphorylation. Several predicted targets of miR-199-3p, such as PIK3CB, ITGA3, and ITGA6 were shown to be up-regulated at these late time points, correlating with the miR-199-3p down-regulation. The interaction of miR-199-3p with target sites in the 3′UTRs of PIK3CB and ITGA3 was validated by luciferase reporter assays and western blotting and qRT-PCR results indicated that protein and mRNA levels of ITGA6 were regulated by miR-199-3p mimic transfection. However, the knock-down of these three targets did not result in a significant decrease of the viral growth, and thus cannot alone explain the antiviral function of miR-199-3p. Overall, this study suggests that the transcriptional repression of miR- 199a/214 is likely a strategy employed by CMV to support its own growth through attenuating the biological effect of miR-199-3p within the host cell.
2

Regulation of angiogenic processes in omental endothelial cells during metastasis of epithelial ovarian cancer

Pranjol, Md Zahidul Islam January 2017 (has links)
Epithelial ovarian cancer frequently metastasizes to the omentum, a process that requires pro-angiogenic activation of local microvascular endothelial cells (ECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete factors, other than vascular endothelial growth factor (VEGF), with possible roles in metastatic angiogenesis including the lysosomal proteases cathepsin L (CathL) and cathepsin D (CathD), and insulin-like growth factor binding protein 7 (IGFBP7). However, the mechanisms by which these factors may contribute to omental endothelial angiogenic changes are unknown. Therefore the aims of this thesis were a) to examine disease relevant human omental microvascular endothelial cell (HOMEC) proliferation, migration and angiogenesis tube-formation induced by CathL, CathD and IGFBP7; b) to investigate whether CathL and CathD act via a proteolytic or non-proteolytic mechanism; c) to identify activated downstream intracellular signalling cascades in HOMECs and their activation in proliferation and migration; and finally d) to identify activated cell surface receptors by these factors. CathL, CathD and IGFBP7 significantly induced proliferation and migration in HOMECs, with CathL and CathD acting in a non-proteolytic manner. Proteome-profiler and ELISA data identified increased phosphorylation of the ERK1/2 and AKT (protein kinase B) pathways in HOMECs in response to these factors. CathL induced HOMEC proliferation and migration via the ERK1/2 pathway, whereas, although CathD-induced proliferation was mediated by activation of ERK1/2, its migratory effect was dependent on both ERK1/2 and AKT pathways. Interestingly, CathL induced secretion of galectin-1 (Gal1) from HOMECs which in turn significantly induced HOMEC proliferation via ERK1/2. However, none of the ERK1/2 or AKT pathways was observed to be active in Gal1-induced HOMEC migration. Interestingly, Gal1-induced proliferation and migration were significantly inhibited by L-glucose, suggesting a role for a receptor with extracellular sugar moieties. IGFBP7-induced migration was shown to be mediated via activation of the ERK1/2 pathway only. CathL, Gal1 and IGFBP7 significantly induced angiogenesis tube-formation in HOMECs which was not observed in CathD-treated cells. Receptor tyrosine kinase array revealed activation of Tie-1 and VEGF receptor type 2 (VEGFR2) in CathL and IGFBP7-treated HOMECs respectively. In conclusion, all CathL, CathD, Gal1 and IGFBP7 have the potential to act as proangiogenic factors in the metastasis of ovarian cancer to the omentum. These in vitro data suggest all four factors activate intracellular pathways which are involved in well-known angiogenesis models.
3

HSPA12B Inhibits Lipopolysaccharide-Induced Inflammatory Response in Human Umbilical Vein Endothelial Cells

Wu, Jun, Li, Xuehan, Huang, Lei, Jiang, Surong, Tu, Fei, Zhang, Xiaojin, Ma, He, Li, Rongrong, Li, Chuanfu, Li, Yuehua, Ding, Zhengnian, Liu, Li 01 January 2015 (has links)
Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.
4

TLR2 Ligands Induce Cardioprotection Against Ischaemia/Reperfusion Injury Through a PI3K/Akt-Dependent Mechanism

Ha, Tuanzhu, Hu, Yulong, Liu, Li, Lu, Chen, McMullen, Julie R., Kelley, Jim, Kao, Race L., Williams, David L., Gao, Xiang, Li, Chuanfu 01 September 2010 (has links)
Aims Toll-like receptor (TLR)-mediated signalling pathways have been implicated in myocardial ischaemia/reperfusion (I/R) injury. Activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway protects the myocardium from ischaemic injury. We hypothesized that the modulation of TLR2 would induce cardioprotection against I/R injury via activation of the PI3K/Akt signalling. Methods and results Mice were treated with TLR2 ligands, peptidoglycan (PGN) or Pam3CSK4, respectively, 1 h before the hearts were subjected to ischaemia (1 h), followed by reperfusion (4 h). Infarct size was determined by triphenyltetrazolium chloride staining. Cardiac function and haemodynamic performance were evaluated. Infarct size was significantly reduced in PGN-or Pam3CSK4-treated mice compared with untreated I/R mice. Administration of TLR2 ligands improved cardiac function following I/R. PGN treatment increased the levels of phospho-Akt and phospho-GSK-3β (glycogen synthase kinase-3β), compared with untreated I/R hearts. PGN stimulation increased TLR2 tyrosine phosphorylation and association of the p85 subunit of PI3K with TLR2. To investigate the role of PI3K/Akt signalling in PGN-induced cardioprotection, we administered the PI3K inhibitor, Wortmannin, to the mice 15 min before PGN treatment. We also administered PGN to kinase-deficient Akt (kdAkt) transgenic mice 1 h before myocardial I/R. Both PI3K inhibition and kdAkt mice abolished the cardioprotection induced by PGN. To examine the role of TLR2 in PGN-induced cardioprotection, we administrated PGN to TLR2 knockout mice 1 h before the hearts were subjected to I/R. PGN-induced cardioprotection was lost in TLR2-deficient mice. Conclusion These results demonstrate that TLR2 ligands induced cardioprotection, which is mediated through a TLR2/PI3K/Akt-dependent mechanism.
5

Attenuation of Cardiac Dysfunction by HSPA12B in Endotoxin-Induced Sepsis in Mice Through a PI3K-Dependent Mechanism

Zhou, Hongmei, Qian, Jin, Li, Chuanfu, Li, Jingjin, Zhang, Xiaojin, Ding, Zhengnian, Gao, Xiang, Han, Zhihua, Cheng, Yunlin, Liu, Li 01 January 2011 (has links)
Aims Cardiac dysfunction is a critical manifestation of severe sepsis/septic shock and is responsible for high mortality due to sepsis. Recent evidence suggests that angiogenic factors have a protective effect on sepsis-induced organ damage. Heat shock protein A12B (HSPA12B) is a newly discovered gene that is essential for angiogenesis. We hypothesized that overexpression of HSPA12B would induce protection against endotoxin-induced cardiac dysfunction.Methods and results To evaluate this hypothesis, we generated transgenic mice overexpressing the human hspa12b gene (Tg). Wild-type (WT) littermates served as controls. Tg and WT mice were treated with lipopolysaccharide (LPS) and cardiac function was measured after 6 h. LPS treatment caused cardiac dysfunction in WT mice. In contrast, cardiac function was significantly preserved in Tg mice following LPS administration. LPS increased the expression of vascular cell adhesion molecule-1 (VCAM-1)/intercellular adhesion molecule-1 (ICAM-1) and leucocyte infiltration into the myocardium of WT mice. In Tg mice, LPS-increased VCAM-1/ICAM-1 expression and leucocyte infiltration were significantly attenuated. Overexpression of HSPA12B also prevented the decrement in the activation of phosphatidlyinositide 3-kinase (PI3K)/protein kinase B (Akt) signalling in the myocardium. Importantly, PI3K inhibition with Wortmannin abolished the protection of HSPA12B against LPS-induced cardiac dysfunction. Conclusion These results suggest that HSPA12B plays an important role in the attenuation of endotoxin-induced cardiac dysfunction and that the mechanisms involve the preserved activation of PI3K/Akt signalling, resulting in attenuation of LPS-increased expression of VCAM-1/ICAM-1 and leucocyte infiltration into the myocardium.
6

Einfluss von Celecoxib auf die Entstehung und den Verlauf einer kardialen Hypertrophie / Celecoxib modulates the development and progress of cardiac Hypertrophy

Grüber, Meike 29 March 2011 (has links)
No description available.
7

CHARACTERIZATION OF A POPULATION OF TUMOUR-INITIATING CELLS WITH STEM-LIKE PROPERTIES IN HUMAN PROSTATE CANCER

Rybak, Adrian P. 19 September 2014 (has links)
<p>There is increasing evidence that prostate tumours are organized as a hierarchy with rare cancer stem cells (CSCs) implicated in initiating and maintaining the tumour. However, prospective prostate cancer stem cells (PCSCs) have not been thoroughly characterized from primary tissue specimens. Using the DU145 cell line, PCSCs have been propagated as non-adherent spheres <em>in vitro</em>. Approximately 1.25% of monolayer DU145 cells formed primary spheres while 26% of sphere cells formed subsequent spheres; a measure of PCSC self-renewal capacity. Spheres are enriched for cells expressing prostate basal and luminal cytokeratins and CSC markers (CD44, CD24, integrin alpha2beta1). PCSCs initiate xenograft tumours with enhanced capacity compared to monolayer cells. While epidermal growth factor (EGF) promoted PCSC propagation, basic fibroblast growth factor (bFGF) inhibited these events. Activation of EGF receptor (EGFR) signalling, following EGF treatment or expression of constitutively-active EGFR (EGFRvIII), increased sphere formation. Conversely, attenuation of EGFR signalling inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signalling, the MEK-ERK pathway contributes to EGFR-facilitated PCSC propagation. Inhibition of ERK activation following MEK inhibitor treatment, expression of dominant-negative MEK1(K97M), or knockdown of ERK1 or ERK2 reduced PCSC propagation. Therefore, EGFR signalling promotes PCSC self-renewal by activating the MEK-ERK pathway.</p> <p>SOX2 is an essential transcription factor for stem cells, however, its role in PCSCs remains unclear. SOX2 protein is upregulated in PCSCs propagated as spheres, and its expression is regulated by EGFR signalling. EGFR activation, following EGF treatment or expression of constitutively-active EGFRvIII, increased SOX2 expression and PCSC self-renewal, while being attenuated by EGFR inhibitor treatment. Ectopic SOX2 expression enhanced EGF-induced PCSC self-renewal, while SOX2 knockdown renders PCSCs non-responsive to EGF-induced self-renewal and reduced their anchorage-independent growth. Furthermore, SOX2 expression is associated with the ability of PCSCs to form aggressive xenograft tumours. Collectively, SOX2 regulates EGFR-mediated PCSC self-renewal.</p> / Doctor of Philosophy (PhD)
8

A dissection of class I phosphoinositide 3-kinase signalling in mouse embryonic fibroblasts and prostate organoids

Sadiq, Barzan A. January 2018 (has links)
Class I PI3Ks are a family (α, β, δ and γ) of ubiquitous lipid kinases that can be activated by cell surface receptors to 3-phosphorylate PI(4,5)P2 (phosphatidylinositol(4,5)-bisphosphate) and generate the signalling lipid PI(3,4,5)P3. The PI(3,4,5)P3 signal then activates a diverse collection of effector proteins involved in regulation of cell migration, metabolism and growth. The importance of this network is evidenced by the relatively high frequency with which cancers acquire gain-of-function mutations in this pathway and huge efforts to make PI3K inhibitors to treat cancer. The canonical model describing these events suggests class I PI3Ks are activated at the plasma membrane and generate PI(3,4,5)P3 in the inner leaflet of the plasma membrane where its effectors are activated. The PI(3,4,5)P3 signal can be terminated directly, by the tumour-suppressor and PI(3,4,5)P3-3-phosphatase PTEN, or modified to a distinct PI(3,4)P2 signal, by SHIP-family 5-phosphatases. The PI(3,4)P2 is removed by INPP4-family 4-phosphatases. Published work has shown that PI(3,4,5)P3 signalling can also occur in endosomes and nuclei, however, there is very little data defining the intracellular distribution of endogenous class I PI3Ks that supports these ideas; this is as a result of technical problems such as; their very low abundance, poor antibody-based tools and artefacts generated by overexpression of PI3Ks. Past work has indicated that, in PTEN-null mouse models of prostate tumour progression, either PI3Kβ or PI3Ks α and β, have important roles. Furthermore, the cell types and mechanism involved remained unclear. Recent published work in the host laboratory had indicated that there is an unexpectedly large accumulation of PI(3,4)P2 in PTEN-null cells that might be an important part of its status as a major tumour suppressor. The explanation and prevalence of this observation was unclear but potentially a result of PTEN also acting as a PI(3,4)P2 3-phosphatase in vivo. MEFs were derived from genetically-modified mice expressing endogenous, AviTagged class I PI3K subunits and used in experiments to define the subcellular localisation of class I PI3Ks. We found that following stimulation with PDGF, class IA PI3K subunits were unexpectedly depleted from the adherent basal membrane, in contrast, p85α and p110α, but not p85β and p110β, accumulated transiently in the nucleus. Interestingly, p110β, but none of the other subunits, was constitutively localised in the nucleus. These results support the idea that class I PI3K and PI(3,4,5)P3 signalling occurs in the nucleus. In organoids derived from WT, PI3Kγ-null or PTEN-null mouse prostate, application of PI3K-selective inhibitors revealed that PI3Kα had a dominant role in generating PI(3,4,5)P3 in prostate epithelial cells. The levels of PI(3,4)P2 were also elevated substantially in PTEN-null, compared to WT prostate organoids, use of PI3K-selective inhibitors suggested that it was also generated by PI3Kα. These data were consistent with the idea that PTEN can act as a PI(3,4)P2 3-phosphatase. Surprisingly, raising the pH of the organoids medium dramatically increased accumulation of PI(3,4,5)P3 and PI(3,4)P2, although the cause of this effect was unclear, we hypothesised the pH of the local environment may influence signalling via class I PI3Ks.

Page generated in 0.0814 seconds