• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an archetype : studies in the Shurayḥ traditions

Mohammed, Khaleelul Iqbal. January 2001 (has links)
No description available.
2

Development of an archetype : studies in the Shurayḥ traditions

Mohammed, Khaleelul Iqbal. January 2001 (has links)
Shurayh&dotbelow; b. al-H&dotbelow;arith al-Kindi, the Successor and qad&dotbelow;i is, without a doubt, the most famous Kufan jurist prior to Ibrahim al-Nakha`i (d. 95/713). But neither Shurayh&dotbelow; nor his Kufan contemporaries left any books or written records. All information about the qad&dotbelow;i comes in the form of traditions provided by the later generations of Muslim chroniclers. These traditions do not satisfy any standard of historical verifiability; they tell us primarily and reliably only about what those later generations thought important to say about, or in the name of, Shurayh&dotbelow;. This is, nonetheless, vital information, and its importance is defined in the thesis question: what can we, by examining the traditions about Shurayh&dotbelow;, learn about the development of Islamic law? / The traditions are categorized into the following typologies, each of which is analyzed in a separate chapter: (a) biographical traditions, (b) legal theory, (c) legal ethics and procedure, (d) substantive law, (e) Shi`a juridical traditions. The analysis of the biographical traditions reveals that quite early after Shurayh&dotbelow;'s death---estimated at sometime between 76/695 and 99/718, he had evolved into a hazy figure. / In addition to providing a response to the thesis question, the conclusion seeks to answer some other questions, among them: why did Shurayh&dotbelow;, who was not the legal reasoner par excellence of his time, metamorphose into an aretological figure? Why did the Kufans seek to back-project his appointment to the time of `Umar? Based on the evidence, it is concluded that in Kufan imagery, Shurayh&dotbelow;'s legal opinions were deemed as valid as those of a Companion, and he personified the Kufan authority of "pastness."
3

Les Épîtres des Frères en Pureté (Rasāʾil Iḫwān aṣ-ṣafā), une pensée de la totalité : établissement de la paternité historique et commentaire philosophique de l’ouvrage / Epistles of the Brethren in Purity (Rasāʾil Iḫwān aṣ-ṣafā), thinking totality

Vaulx d'Arcy, Guillaume de 19 November 2016 (has links)
Les Épîtres des Frères en Pureté forment une encyclopédie des sciences philosophiques (au sens hégélien) composée par Aḥmad b. aṭ-Ṭayyib as-Saraḫsī vers 280/894 à partir des travaux effectués par les Frères en Pureté, héritage du « cercle d’al-Kindī ». Le système trouve ses fondations dans l’arithmétique de Nicomaque de Gérase, est composé de la science kindienne, et s’élève sur les préoccupations politiques d’al-Ǧāḥiẓ, mais réalise une construction philosophique originale. Historiquement, une fois démontrée l’unicité du rédacteur, établi qu’Abū Ḥātim puise sa réfutation d’Abū Bakr ar-Rāzī dans la doctrine rasaélienne de l’héritage scientifique des prophètes, compris que les Rasāʾil sont alimentées par le kindisme, repéré que le seul héritier d’al-Kindī apte à cette entreprise est as-Saraḫsī, la comparaison des fragments saraḫsiens avec les épîtres révèle l’identité de style et de doctrine. L’identification de surcroît d’as-Saraḫsī au réviseur de l’Introduction arithmétique de Nicomaque autorise à postuler un système philosophique fondé mathématiquement. Préoccupées par le problème ontologique de la diversité du réel sous l’unité du Créateur, par le problème épistémologique de la divergence des méthodes et des doctrines scientifiques et religieuses malgré l’unité de la vérité et par le problème politique de la discorde malgré l’interdépendance des hommes, les Rasāʾil Iḫwān aṣ-Ṣafā entreprennent d’unifier la multiplicité empirique des êtres, de coordonner les savoirs et de réconcilier les hommes en une communauté vertueuse au moyen de trois concepts mathématiques : par leur origine dans l’émanation des êtres à partir du Créateur exprimée par la suite arithmétique, dans leur structure par la compréhension des analogies et des puissances entre les choses que révèle le rapport harmonique, et dans leur finalité au moyen de l’abstraction géométrique des formes hors de la matière constituée en modèle initiatique des âmes à la séparation d’avec le corps. / The Epistles of Brethren in Purity are an encyclopedia of philosophical sciences (in the Hegelian meaning) and were composed by Aḥmad b. aṭ-Ṭayyib as-Saraḫsī around 280/894. They are based on the work of the Brethren in Purity, which are the social inheritance of the “circle of al-Kindī.” The system itself is based on the arithmetic works of Nicomaque of Gerase. It is full of kindian science and erected on al-Ǧāḥiẓ political concerns. But as-Saraḫsī builds a very particular philosophical object. At the historical level, once we determine that the author is unique, that his views on the scientific heritage of the prophets is largely used by Abū Ḥātim ar-Rāzī to dispute with Abū Bakr, that the epistles are full of kindian elements, that the only al-Kindī’s student able to write such a book is Aḥmad b. aṭ-Ṭayyib as-Saraḫsī, we can compare the text with his fragments and reveal that they both share a particular style and philosophical ideas. So, because as-Saraḫsī is also the corrector of Nicomaque’s Introduction on Arithmetics, we can assume that he gives great importance to mathematics and base his system on it. The Epistles are focused on the ontological problem of the diversity of reality under the reign of the Creator’s unity, on the epistemological problem of contrariety of sciences and religions in methods and beliefs, and on the political problem of adversity of men in spite common interdependence. So they unify the effective multiplicity of beings, order the different disciplines of knowledge and build human reconciliation in the virtuous city, thanks to three mathematical concepts: they rewrite the emanation of beings from the Creator’s spring with the arithmetical sequence, they unify the actual structure of the world with the harmonic relation that rationalizes the different analogies and the mutual powers of their parts, and they educate the soul to its spiritual end with the geometric abstraction of forms from the material.

Page generated in 0.0357 seconds