• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 12
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estratégias computacionais como métodos alternativos para avaliação da sensibilização cutânea / Computational strategies as alternative methods to chemical prediction of skin sensitization

Alves, Vinícius de Medeiros 12 May 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-12T15:19:44Z No. of bitstreams: 2 Dissertação - Vinicius de Medeiros Alves - 2014.pdf: 3082084 bytes, checksum: da4838d5fe24841429f43de84204d98a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-12T15:21:40Z (GMT) No. of bitstreams: 2 Dissertação - Vinicius de Medeiros Alves - 2014.pdf: 3082084 bytes, checksum: da4838d5fe24841429f43de84204d98a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-12T15:21:40Z (GMT). No. of bitstreams: 2 Dissertação - Vinicius de Medeiros Alves - 2014.pdf: 3082084 bytes, checksum: da4838d5fe24841429f43de84204d98a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-05-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Introduction: Skin sensitization is a major environmental and human health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. Skin sensitization is commonly evaluated using structural alerts. However, there has been a growing concern that alerts disproportionally flag too many chemicals as toxic, which questions their reliability as toxicity markers. The main goal of this thesis was to develop and apply new cheminformatics methods to predict skin sensitization of chemical compounds that lack experimental data. Methodology: It has been compiled, curated, analyzed, and compared the available human data and the murine (performed in mice) animal model data, named LLNA (local lymph node assay). Using these data, it was developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. It was developed a freely accessible web-based application for the identification of potential skin sensitizers. In addition, it was demonstrated that contrary to the common perception of QSAR models as “black boxes” they can be used to identify statistically significant chemical substructures (QSAR-based alerts) that influence toxicity. Results and discussion: The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher correct classification rate of 82% but at the expense of the reduced external dataset coverage (52 %). We used the developed QSAR models for virtual screening of CosIng database and identified 1,061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. The developed Pred-Skin web app (http://www.labmol.com.br/predskin/) is based on binary QSAR models of human (109 compounds) and LLNA (515 compounds) data with good external correct classification rate (70-81% and 72-84%, respectively). It is also included a multiclass potency model based on LLNA data (accuracy ranging between 73-76%). Conclusions: Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential. The Pred-Skin web app is a fast, reliable, and user-friendly tool for early assessment of chemically-induced skin sensitization. A new approach that synergistically integrates structural alerts and rigorously validated QSAR models for a more transparent and accurate safety assessment of new chemicals was also proposed. / Introdução: A sensibilização cutânea é um importante parâmetro de avaliação de toxicidade humana e ambiental. Embora muitos compostos tenham sido avaliados em seres humanos, não foi reportado até o momento modelos de QSAR (do inglês, quantitative structure-activity relationships) gerados com esses dados. Comumente, a sensibilização cutânea é avaliada computacionalmente usando-se alertas estruturais. No entanto, tem havido uma preocupação crescente de que alertas sinalizam a maioria dos compostos como tóxicos, o que questiona sua confiabilidade como marcadores de toxicidade. O objetivo geral do presente trabalho foi desenvolver e aplicar novos métodos de quimioinformática para predizer a sensibilização cutânea de compostos químicos que carecem de dados experimentais. Metodologia: Foram compilados, preparados, analisados e comparados os dados de sensibilização cutânea de pele humana e do modelo animal murino (realizado em camundongos), denominado LLNA (local lymph node assay). Modelos de QSAR foram desenvolvidos utilizando esses dados e aplicados para a triagem de quimiotecas virtuais para identificar potenciais sensibilizadores. Foi desenvolvido um aplicativo gratuito para a identificação de potenciais sensibilizadores cutâneos. Além disso, foi demonstrado que modelos de QSAR podem ser usados para identificar subestruturas químicas estatisticamente significativas (alertas estruturais baseados em QSAR) que influenciam a toxicidade. Resultados e discussão: A concordância global (R) entre respostas de sensibilização cutânea humana e murina para um conjunto de 135 substâncias químicas únicas foi baixa (R = 28-43%), embora várias classes químicas apresentassem alta concordância. Foi possível desenvolver modelos de QSAR preditivos com taxa de classificação correta externa de 71%. Um modelo de consenso que integrava predições concordantes de QSAR e dados de LLNA proporcionaram uma acurácia 82%. Utilizou-se os modelos de QSAR desenvolvidos para a triagem virtual da base de dados CosIng e foram identificados 1061 potenciais sensibilizadores cutâneos. Para dezessete desses compostos, encontrou-se evidências publicadas de seus efeitos de sensibilização cutânea em seres humanos. O aplicativo desenvolvido, Pred-Skin (http://www.labmol.com.br/predskin/), baseia-se em modelos de QSAR classificatórios de dados humanos (109 compostos) e murinos (515 compostos) com boa taxa de classificação correta externa (70-81% e 72-84%, respectivamente). Esse aplicativo também possui um modelo de multiclassificatório desenvolvido com dados de LLNA (precisão que varia entre 73-76%). Conclusões: Os modelos de QSAR desenvolvidos forneceram uma alternativa mais precisa do que o modelo animal para avaliação da sensibilização cutânea humana. Além disso, a interpretação dos modelos de QSAR permitem orientar a otimização estrutural de compostos tóxicos para reduzir o potencial de toxicidade. O aplicativo Pred-Skin é uma ferramenta rápida, confiável e de fácil utilização para a avaliação da sensibilização cutânea de compostos químicos. Foi também proposta uma nova abordagem que integra sinergicamente alertas estruturais e modelos de QSAR rigorosamente validados para uma avaliação de toxicidade mais transparente e precisa de novos produtos químicos.
12

[en] A NOVEL SELF-ADAPTIVE APPROACH FOR OPTIMIZING THE USE OF IOT DEVICES IN PATIENT MONITORING USING EWS / [pt] UMA NOVA ABORDAGEM AUTOADAPTÁVEL PARA OTIMIZAR O USO DE DISPOSITIVOS IOT NO MONITORAMENTO DE PACIENTES USANDO O EWS

ANTONIO IYDA PAGANELLI 15 May 2023 (has links)
[pt] A Internet das Coisas (IoT) se propõe a interligar o mundo físico e a Internet, o que abre a possibilidade de desenvolvimento de diversas aplicações, principalmente na área da saúde. Essas aplicações requerem um grande número de sensores para coletar informações continuamente, gerando grandes fluxos de dados, muitas vezes excessivos, redundantes ou sem significado para as operações do sistema. Essa geração massiva de dados de sensores desperdiça recursos computacionais para adquirir, transmitir, armazenar e processar informações, levando à perda de eficiência desses sistemas ao longo do tempo. Além disso, os dispositivos IoT são projetados para serem pequenos e portáteis, alimentados por baterias, para maior mobilidade e interferência minimizada no ambiente monitorado. No entanto, esse design também resulta em restrições de consumo de energia, tornando a vida útil da bateria um desafio significativo que precisa ser enfrentado. Além disso, esses sistemas geralmente operam em ambientes imprevisíveis, o que pode gerar alarmes redundantes e insignificantes, tornando-os ineficazes. No entanto, um sistema auto-adaptativo que identifica e prevê riscos iminentes através de um sistema de pontuação de alertas antecipados (EWS) pode lidar com esses problemas. Devido ao seu baixo custo de processamento, a referência EWS pode ser incorporada em dispositivos vestíveis e sensores, permitindo um melhor gerenciamento das taxas de amostragem, transmissões, produção de alarmes e consumo de energia. Seguindo a ideia acima, esta tese apresenta uma solução que combina um sistema EWS com um algoritmo auto-adaptativo em aplicações IoT de monitoramento de pacientes. Desta forma, promovendo uma redução na aquisição e transmissão de dados , diminuindo alarmes não acionáveis e proporcionando economia de energia para esses dispositivos. Além disso, projetamos e desenvolvemos um protótipo de hardware capaz de embarcar nossa proposta, evidenciando a sua viabilidade técnica. Além disso, usando nosso protótipo, coletamos dados reais de consumo de energia dos componentes de hardware que foram usados durante nossas simulações com dados reais de pacientes provenientes de banco de dados públicos. Nossos experimentos demonstraram grandes benefícios com essa abordagem, reduzindo em 87 por cento os dados amostrados, em 99 por cento a carga total das mensagens transmitidas do dispositivo de monitoramento, 78 por cento dos alarmes e uma economia de energia de quase 82 por cento. No entanto, a fidelidade do monitoramento do estado clínico dos pacientes apresentou um erro absoluto total médio de 6,8 por cento (mais ou menos 5,5 por cento), mas minimizado para 3,8 por cento (mais ou menos 2,8 por cento) em uma configuração com menores ganhos na redução de dados. A perda de detecção total dos alarmes dependendo da configuração de frequências e janelas de tempo analisadas ficou entre 0,5 por cento e 9,5 por cento, com exatidão do tipo de alarme entre 89 por cento e 94 por cento. Concluindo, este trabalho apresenta uma abordagem para o uso mais eficiente de recursos computacionais, de comunicação e de energia para implementar aplicativos de monitoramento de pacientes baseados em IoT. / [en] The Internet of Things (IoT) proposes to connect the physical world to the Internet, which opens up the possibility of developing various applications, especially in healthcare. These applications require a huge number of sensors to collect information continuously, generating large data flows, often excessive, redundant, or without meaning for the system s operations. This massive generation of sensor data wastes computational resources to acquire, transmit, store, and process information, leading to the loss of efficiency of these systems over time. In addition, IoT devices are designed to be small and portable, powered by batteries, for increased mobility and minimized interference with the monitored environment. However, this design also results in energy consumption restrictions, making battery lifetime a significant challenge that needs to be addressed. Furthermore, these systems often operate in unpredictable environments, which can generate redundant and negligible alarms, rendering them ineffective. However, a self-adaptive system that identifies and predicts imminent risks using early-warning scores (EWS) can cope with these issues. Due to its low processing cost, EWS guidelines can be embedded in wearable and sensor devices, allowing better management of sampling rates, transmissions, alarm production, and energy consumption. Following the aforementioned idea, this thesis presents a solution combining EWS with a self-adaptive algorithm for IoT patient monitoring applications. Thus, promoting a reduction in data acquisition and transmission, decreasing non-actionable alarms, and providing energy savings for these devices. In addition, we designed and developed a hardware prototype capable of embedding our proposal, which attested to its technical feasibility. Moreover, using our wearable prototype, we collected the energy consumption data of hardware components and used them during our simulations with real patient data from public datasets. Our experiments demonstrated great benefits of our approach, reducing by 87 percent the sampled data, 99 percent the total payload of the transmitted messages from the monitoring device, 78 percent of the alarms, and an energy saving of almost 82 percent. However, the fidelity of monitoring the clinical status of patients showed a mean total absolute error of 6.8 percent (plus-minus 5.5 percent) but minimized to 3.8 percent (plus-minus 2.8 percent) in a configuration with lower data reduction gains. The total loss of alarm detection depends on the configuration of frequencies and time windows, remaining between 0.5 percent and 9.5 percent, with an accuracy of the type of alarm between 89 percent and 94 percent. In conclusion, this work presents an approach for more efficient use of computational, communication, and energy resources to implement IoT-based patient monitoring applications.

Page generated in 0.0403 seconds