Spelling suggestions: "subject:"algèbre onsager"" "subject:"algèbre mansager""
1 |
Approche à la Onsager en systèmes intégrablesBaseilhac, Pascal 13 December 2010 (has links) (PDF)
Une nouvelle approche non-perturbative à la Onsager en systèmes intégrables quantiques est développée, dont les idées maîtresses prennent leurs racines dans l'article de L. Onsager (1944) portant sur la solution exacte du modèle d'Ising en deux dimensions. L'intérêt de cette approche repose sur le fait qu'elle est applicable de façon systématique dans le cas oú d'autres méthodes usuelles échouent. Celle-ci repose sur l'étude de quatres éléments capitaux: (i) L'identification de l'algèbre non-Abélienne de dimension infinie généralisant l'algèbre de Onsager et représentant la condition d'intégrabilité du modèle; (ii) La construction d'une hiérarchie de quantités en involution formant une sous-algèbre Abélienne; (iii) L'étude des réalisations et représentations de dimension finie et infinie de cette algèbre; (iv) La résolution du modèle à l'aide de ces données. Pour un modèle de référence - la chaîne de spin XXZ de taille finie avec conditions aux bords intégrables - la nouvelle approche basée sur l'algèbre q-Onsager introduite par P. Terwilliger est utilisée pour résoudre le problème spectral (spectre en énergie et états propres) dans le régime de paramètres génériques où l'ansatz de Bethe est inapplicable. Certaines étapes essentielles à l'obtention des fonctions de corrélations dans la limite thermodynamique du modèle sont aussi franchies, s'inspirant de la méthode de M. Jimbo et al.. La généralisation associée à toute algèbre de Lie affine de l'algèbre q-Onsager est proposée, et permet de classifier toutes les conditions d'intégrabilité dans les théories de Toda affines avec bord. Diverses perspectives sont enfin présentées.
|
2 |
Les relations de q-Dolan-Grady d'ordre supérieur et certains systèmes intégrales quantiques / The higher order q-Dolan-Grady relations and quantum integrable systemsVu, Thi Thao 24 November 2015 (has links)
Dans cette thèse, la connexion entre certaines structures algébriques récentes (algèbres tridiagonales, algèbre q-Onsager, algèbres q-Onsager généralisées), la théorie des représentations (paire tridiagonale, paire de Leonard, polynômes orthogonaux), certaines des propriétés de ces algèbres et l’analyse de modèles intégrables quantiques sur le réseau (la chaîne de spin XXZ ouverte aux racines de l’unité) est considérée. / In this thesis, the connection between recently introduced algebraic structures (tridiagonal algebra, q-Onsager algebra, generalized q-Onsager algebras), related representation theory (tridiagonal pair, Leonard pair, orthogonal polynomials), some properties of these algebras and the analysis of related quantum integrable models on the lattice (the XXZ open spin chain at roots of unity) is considered.
|
Page generated in 0.04 seconds