• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 167
  • 167
  • 66
  • 54
  • 43
  • 36
  • 29
  • 25
  • 23
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Cloning and characterization of a novel ferritin from the marine diatom Pseudo-nitzschia multiseries

Moccia, Lauren Paul 11 1900 (has links)
Diatoms play a fundamental role in marine food webs, and significantly contribute to global primary production and carbon sequestration into the deep ocean. In many offshore areas of the open ocean, iron (Fe) input is low, and its availability often limits phytoplankton biomass. Recently, gene sequences encoding ferritin, a nearly ubiquitous iron storage and detoxifying protein, have been identified in pennate diatoms such as Pseudo-nitzschia, but not in other Stramenopiles (which include centric diatoms, brown algae and some protist plant parasites) or Cryptophyte relatives. Members of this genus readily bloom upon addition of iron to Fe-limited waters, and are known to produce the neurotoxin domoic acid. Until now, the reason for the success of pennate diatoms in the open ocean was uncertain; however, expressing ferritin would allow pennate species to store Fe after a transient input, using it to dominate Fe stimulated algal blooms. Here, the ferritin gene was cloned from the coastal pennate diatom Pseudonitzschia multiseries, overexpressed in Escherichia coli, and purified using liquid chromatography. The ferritin protein sequence appears to encode a non-heme, ferritinlike di-iron carboxylate protein, while gel filtration chromatography and SDS-PAGE indicate that this ferritin is part of the 24 subunit maxi-ferritins. Spectroscopically monitoring the addition of Fe(II) to a buffered ferritin solution shows that the P. multiseries protein demonstrates ferroxidase activity, binding iron and storing it as Fe(III) in excess of 600 equivalents per protein shell. In keeping with the typical stoichiometry of the ferroxidase reaction, oxygen (O₂) is consumed in a 2 Fe:O₂ratio while hydrogen peroxide is produced concurrently. iii Diatoms evolved from secondary endosymbiosis involving eukaryotic red algae; however, a broad phylogenetic comparison suggests that P. multiseries ferritin was likely acquired via lateral gene transfer from cyanobacteria – not from its ancestral endosymbionts. Until recently, no other ferritins have been identified in diatoms, and the protein characterized here is unique in that it seems to be derived from a prokaryotic organism yet it occurs in a marine eukaryote. These findings have direct implications for the success of pennate diatoms in both Fe rich coastal waters and upon Fe addition in the open ocean.
122

The Madison lakes problem

Flannery, James Joseph, January 1949 (has links)
Thesis (M.A.)--University of Wisconsin, 1949. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 157-159).
123

Growth of natural phytoplankton populations of Wilson Bay : a nutrient bioassay approach /

Brousseau, Jennifer Peterson. January 2005 (has links)
Thesis (M.S.)--University of North Carolina at Wilmington, 2005. / Includes bibliographical references (leaves: 48-49)
124

Cloning and characterization of a novel ferritin from the marine diatom Pseudo-nitzschia multiseries

Moccia, Lauren Paul 11 1900 (has links)
Diatoms play a fundamental role in marine food webs, and significantly contribute to global primary production and carbon sequestration into the deep ocean. In many offshore areas of the open ocean, iron (Fe) input is low, and its availability often limits phytoplankton biomass. Recently, gene sequences encoding ferritin, a nearly ubiquitous iron storage and detoxifying protein, have been identified in pennate diatoms such as Pseudo-nitzschia, but not in other Stramenopiles (which include centric diatoms, brown algae and some protist plant parasites) or Cryptophyte relatives. Members of this genus readily bloom upon addition of iron to Fe-limited waters, and are known to produce the neurotoxin domoic acid. Until now, the reason for the success of pennate diatoms in the open ocean was uncertain; however, expressing ferritin would allow pennate species to store Fe after a transient input, using it to dominate Fe stimulated algal blooms. Here, the ferritin gene was cloned from the coastal pennate diatom Pseudonitzschia multiseries, overexpressed in Escherichia coli, and purified using liquid chromatography. The ferritin protein sequence appears to encode a non-heme, ferritinlike di-iron carboxylate protein, while gel filtration chromatography and SDS-PAGE indicate that this ferritin is part of the 24 subunit maxi-ferritins. Spectroscopically monitoring the addition of Fe(II) to a buffered ferritin solution shows that the P. multiseries protein demonstrates ferroxidase activity, binding iron and storing it as Fe(III) in excess of 600 equivalents per protein shell. In keeping with the typical stoichiometry of the ferroxidase reaction, oxygen (O₂) is consumed in a 2 Fe:O₂ratio while hydrogen peroxide is produced concurrently. iii Diatoms evolved from secondary endosymbiosis involving eukaryotic red algae; however, a broad phylogenetic comparison suggests that P. multiseries ferritin was likely acquired via lateral gene transfer from cyanobacteria – not from its ancestral endosymbionts. Until recently, no other ferritins have been identified in diatoms, and the protein characterized here is unique in that it seems to be derived from a prokaryotic organism yet it occurs in a marine eukaryote. These findings have direct implications for the success of pennate diatoms in both Fe rich coastal waters and upon Fe addition in the open ocean. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
125

Understanding the Impacts of Harmful Algal Blooms on Biologically-Active Filtration for Drinking Water Treatment

Jeon, Youchul January 2020 (has links)
No description available.
126

Farmer Willingness to Implement Constructed Wetlands in the Western Lake Erie Basin

Soldo, Cole George January 2021 (has links)
No description available.
127

Keeping an Eye on Lake Erie: Using Remote Sensing Imagery to Identify Characteristics of Harmful Algal Blooms

Avouris, Dulcinea M. 31 July 2018 (has links)
No description available.
128

Detecting Color-Producing Pigments in the Indian River Lagoon by Remote Sensing

Judice, Taylor J. 22 August 2019 (has links)
No description available.
129

Changes in Social Networks and Narratives associated with Lake Erie Water Quality Management after the 2014 Toledo Water Crisis

Miles, Austin January 2020 (has links)
No description available.
130

Macro- and micronutrient effects on stream biofilm and lake phytoplankton communities

Stoll, Jordyn Taylor 28 July 2023 (has links)
No description available.

Page generated in 0.044 seconds