• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 165
  • 165
  • 64
  • 53
  • 42
  • 36
  • 29
  • 25
  • 22
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

PSEUDO-NITZSCHIA IN THE INDIAN RIVER LAGOON: AN EMERGING THREAT FOR FLORIDA

Unknown Date (has links)
The Indian River Lagoon (IRL) spans approximately one-third of the east coast of Florida and faces numerous harmful algal blooms. The potentially toxic diatom, Pseudonitzschia, has been observed in many locations of the IRL. The goal of this study was to obtain a better understanding of the factors contributing to population dynamics of Pseudo-nitzschia in the southern IRL system. Bi-monthly surface water samples were collected for 18 months from five locations. Cell counts enumerated all microphytoplankton, and environmental data was collected at sampling sites throughout the study by the Indian River Lagoon Observatory Network. Six species of Pseudonitzschia were isolated and characterized through 18S Sanger sequencing and scanning electron microscopy, all showed toxicity. Surface water samples also showed domoic acid (DA) presence. We report the first known occurrence of Pseudo-nitzschia micropora in the IRL and the first known DA production from this taxon. / Includes bibliography. / Thesis (MS)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
52

A comparative study of the origins of cyanobacteria at Musina Water Treatment Plant using DNA fingerprints

Magonono, Murendeni 18 September 2017 (has links)
MESHWR / Department of Ecology and Resources Management / The presence of harmful algal blooms (HABs) and cyanobacteria toxins in drinking water sources are known to pose a great threat to humans. The main aim of this study was to use molecular technique to determine the origins of the cyanobacteria species at Musina raw water abstraction point by identifying and comparing the non-toxic and toxic cyanobacteria species in the Limpopo River and some of its tributaries based on the phylogenetic analyses of 16S rRNA gene. The Musina water treatment plant is located downstream of a weir and the Beit bridge on the Limpopo River and the raw water supply is abstracted from 22 boreholes of which 14 are along the Limpopo River and 8 boreholes are inside the Limpopo River channel. The bottom sediments samples were collected from these rivers: Limpopo, Crocodile, Mokolo, Mogalakwena, Nzhelele, Lephalale, Sand rivers (South Africa); Notwane (Botswana), Shashe River and Mzingwane River (Zimbabwe). The physical-chemical analysis of the bottom sediments showed the availability of nutrients, nitrates and phosphates, in excess of 0.5 mg/l for most the of rivers, alkaline pH and salinity in excess of 500 mg/l. Total genomic DNA were extracted from cyanobacteria species on the bottom sediments and Polymerase Chain Reaction (PCR) method was used to detect the genetic profile of the cyanobacteria species. Molecular identification of cyanobacteria was based on PCR amplification and sequencing of the 16S rRNA gene. The 16S rRNA gene was absent from sediments of the Mogalakwena and Lephalale rivers but present in all other selected rivers. The cyanotoxins detection was also based on PCR by amplification of microcystin/nodularin and cylindrospermopsin polyketide synthetase genes. Most of the samples showed no amplification of the toxin genes. While two samples showed the amplification of cylindrospermopsin polyketide synthetase gene (Sand River and Nzhelele River Next to Tshipise) and two samples showed amplification for microcystin/nodularin synthetase gene, Crocodile River and Mzingwane River. The first was the confirmation of similarity of samples from Crocodile River downstream of hartbeespoort Dam and Shashe River to Leptolyngbya boryana with 99% bootstrap confidence. The similarity of sample from Musina borehole to Sand River upstream to Alkalinema pantanalense with 98% bootstrap. Thus, the presence of toxic genes may imply the presence of toxic cyanobacteria species in the river sediments and may be hazardous to humans because rural communities and commercial farmers abstract water from Limpopo River catchment for human consumption, livestock and irrigation. The waters of the Limpopo River basin also provide drinking water to wildlife and a habitant for aquatic organisms/animals.
53

Remote sensing of Harmful Algal Blooms (HABs) in water bodies of Vhembe district area, Limpopo province, South Africa

Munyai, Linton Fhatuwani 20 September 2019 (has links)
MENVSC / Department of Ecology and Resource Management / Satellite remote sensing techniques have been proved to be the best methods for quantifying chlorophyll-a levels by estimating algal concentrations in water bodies. Harmful algal blooms (HABs) are posing a significant threat to the many water bodies in South Africa. This study aims at developing remote sensing solution to estimate chlorophyll concentrations in water bodies of Vhembe district municipality using recently launched Landsat 8 OLI. It is the first study to provide quantitative water quality information for the Vhembe region’s water bodies from a time series of satellite remotely sensed data and in-situ laboratory data. The objectives of this study was to evaluate spatial and temporal distributions of algae in water bodies and fish-ponds, to assess water quality parameters, namely: chlorophyll-a and turbidity and to compare data obtained from satellite remote sensors with in situ data. The 30 meters spatial resolution multispectral Landsat 8 OLI for 2016, 2017 and 2018 were used to derive chlorophyll-a estimate from an existing model at three water bodies. The chlorophyll-a concentrations measured during in-situ were employed to validate the Landsat derived chlorophyll-a estimates. The results from this study shows that Landsat derived chlorophyll-a estimates are correlating with field measurements. In all the reservoir, it was detected that there is low content of harmful algal blooms and thus the water bodies are in good condition since the chlorophyll-a concentrations were very low (ranging from 0 to 0.6 mg.m-3). In conclusion, it can be stated that Landsat 8 OLI sensor has the potential to map inland water bodies dominated with algal blooms at certain extent. It can further be stated that Landsat 8 OLI is suitable for monitoring the growth of HABs in aquatic ecosystem and is cost effective. This study also evaluated the potential of Banana peels powder and K2SO4 to inhibits the growth of algae (batch experiment). The water samples were collected at Tshifulanani and Lwamondo fish ponds where there are floating algae. The samples were collected seasonally and analysed for pH, water temperature, Total Dissolved Solids, Electrical conductivity, Dissolved Oxygen, turbidity, chlorophyll-a and absorbance. From the laboratory experiments, there was a variation in the values of absorbance (0.936A-1.234A), PH (7.1-8.3), EC (63.1- 87.9 μs/cm), TDS (52.6-69.7mg/L), water temperature (25.5-29.3°C) and Dissolved oxygen (5.3-7.1mg/L). The concentration of chlorophyll-a for Tshifulanani and Lwamondo fish ponds ranges were (2.14-15.96 mg/m-3) and (0.65-15.66 mg/m-3) respectively. A batch experiment was conducted to determine the potential of banana peels powder on inhibition of algal blooms in water samples by measuring absorbance at 750nm. It can be concluded in this study that banana peels have a potential to inhibits the growth of algae in fish ponds. The Absorbance has shown a rapid v decrease from 0.936A to Zero from day 1 to day 7 respectively. The inhibition of cyanobacteria by banana peels is followed using Potassium sulphate in treating the algal blooms in water samples. Both banana peels and potassium Sulphate has shown a positive response in treatment of algae on the batch experiment. The results of this study revealed that high concentration of physico-chemical parameters promote the growth of cyanobacteria in fish ponds but does not have negative effects on the fish except the oxygen competition with algal blooms. The statistical analysis in correlating the chl-a field measurements and remotely sensed data showed a positive outcome where K values were very high from 70% to 89%. These results show high level of agreement of correlation values of field chlorophyll-a concentration and satellite remotely sensed variables. / NRF
54

A versatile approach for combined algae removal and biofouling control in seawater reverse osmosis (SWRO) desalination systems

Alshahri, Abdullah 02 1900 (has links)
The goal of this study was to evaluate the feasibility of using advanced coagulation with Fe(VI) in coagulation-flocculation-sedimentation/ flotation systems for the pretreatment of SWRO desalination plants during algal bloom events. Algal organic matter (AOM) material extracted from marine diatom species (Chaetoceros affinis) was added to Red Sea water to mimic algal bloom conditions. Low dosage of Fe(VI) (<1 mg Fe/L) was very effective at improving feed water quality containing AOM (algal bloom conditions). Based on results from both a bench-scale DAF unit and Jar testing unit, 0.75 mg Fe/L of Fe (VI) proved to be effective at improving the raw water quality which is comparable to the performance of 1 and 3 mg Fe/L of Fe (III). The removal efficiency for both testing units with the use of Fe(VI) was up to 100% for algae , 99.99% for ATP, 99% for biopolymers and 70 % for DOC. The improvement in Fe(VI) performance is related to the simultaneous action of Fe(VI) as oxidant, disinfectant and coagulant. The performance of Fe(VI) coagulant was also evaluated with the use of coagulant aids (clays). The overall turbidity, DOC, biopolymers and algal cells removal was improved via using Fe(VI) and clays at very low dose. Generally, it was found that for the same pretreatment performance achieved, a much lower Fe(VI) dose was required compared to Fe (III), which make it important to study of cost effectiveness for using Fe(VI) instead of Fe(III) and estimate cost savings during algal bloom conditions. A detailed cost comparative study was conducted for Fe(III) vs. Fe(VI) coagulation process based on the removal efficiency. The use of Fe(VI) reduced the total pretreatment cost by 77% and sludge disposal cost by > 88% compared to the use of Fe(III) in the pretreatment process. The use of Fe(VI) reduces the operational and maintenance cost in SWRO desalination plant by 7% and the production cost by 4%. This study proved that the use of Fe(VI) during high turgidity and algal bloom conditions helped providing high raw water quality to the RO process with lower chemicals and operations cost as well as low chlorine and iron residuals.
55

Harmful Algal Blooms in Caesar Creek Lake and their Relationship to Riparian Cover

Grunden, Morgan C. 01 June 2022 (has links)
No description available.
56

Improving Remote Sensing Algorithms Towards Inland Water Cyanobacterial Assessment From Space

Ogashawara, Igor 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Water is an essential resource for life on Earth, and monitoring its quality is an important task for mankind. However, the amount of water quality data collected by the traditional method is insufficient for the conservation and sustainable management of this important resource. This challenge will be exacerbated by increasing harmful algal blooms at the global scale. To fill this gap, Earth Observations (EO) have been proposed to help stakeholders make their decisions, but the use of EO for monitoring inland water quality is still in development. In this context, the main objective of this study was to improve the estimation of cyanobacteria via remote sensing data. To achieve this goal, the water type classification was first used to identify the dominant optically active constituents within aquatic environments. This information is crucial for understanding the optical properties of inland waters and selecting the best remote sensing algorithm for specific optical water types. The next research question was to develop a universal structure for retrieval of the inherent optical properties of several important aquatic systems around the world, which can be used as a corner stone for developing a globally applicable remote sensing algorithm. The third research topic of this dissertation is about removing the interference of chlorophyll-a with the absorption strength at 620 nm where phycocyanin exhibits its diagnostic absorption so that the estimation of phycocyanin concentration can be improved. Despite the novelty of the proposed remote sensing algorithms which are able to accommodate distinct water optical properties, there are abundant opportunities for improving the parameterization of the proposed models to retrieve inland water quality and optical properties when a global database of optical and water quality measurements is available. Considering the current advancement in spaceborne technology and the existence of a coordinate effort for global calibration and validation of remote sensing algorithms for monitoring inland waters, there is a high potential for operational assessment of harmful cyanobacterial blooms using the remote sensing algorithms proposed in this dissertation.
57

Diel Vertical Distribution of Microcystis and Associated Environmental Factors in the Western Basin of Lake Erie

Kramer, Eva Lauren January 2018 (has links)
No description available.
58

Developing Electrochemical Aptamer-based Biosensors for Quantitative Determination of Cyanotoxins in Water

Vogiazi, Vasileia January 2020 (has links)
No description available.
59

Determining the Anthropogenic Effects on Eutrophication of Utah Lake Since European Settlement Using Multiple Geochemical Approaches

Williams, Richard Ronald Rawle 26 October 2021 (has links)
Recent urbanization of Utah Valley, Utah, has highlighted the impacts of anthropogenically-driven eutrophication of Utah Lake, which may lead to more frequent harmful algal blooms. To examine changes in trophic state, three freeze cores were taken from Utah Lake (Goshen Bay, Provo Bay, and near the Provo Boat Harbor) to examine the extent of eutrophication since European settlement. 210Pb and 137Cs chronologies were constructed for all three cores, although due to low supported 210Pb in the Provo Boat Harbor core, an additional pollen analysis was performed. Lower juniper pollen counts in addition to higher POACEAE (grasses and cereals) counts above 27 cm suggests that land clearance was taking place and horizons above this depth are post-1850s, when Utah Valley was settled. Chronologies in Goshen Bay and Provo Bay show that horizons above 40 cm are post-1950s. Hydrogen index (HI) values derived from RockEval pyrolysis were used to characterize the organic matter in the cores. Material from all three cores show an up-section increase in HI, consistent with the increasing deposition of algal matter. δ15NATM and δ13CVPDB isotope ratios were also measured for organic matter in the cores. 15N shows enrichments upward in the cores, combined with a depletion in 13C across all three. δ15NATM values suggest increasing anthropogenic influence with time that may contribute to algal blooms and eutrophication. δ13CVPDB ratios become depleted towards the top of the core showing a change in the lake’s ecology which may be due to the introduction of invasive Phragmites. X-Ray diffraction (XRD) analysis was used to analyze mineralogical differences. Eastern Utah Lake and Goshen Bay cores contain 70-80 % calcite, 10-15% quartz and 10% dolomite. Provo Bay samples contain 50-60% calcite, 20-30% quartz, and 10% dolomite. The dominance of calcite suggests that the sediment is dominated by endogenic minerals, albeit with a greater contribution of detrital minerals in Provo Bay. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for elemental analysis. Concentrations of phosphorous and trace metals increase in the younger sediment of all three cores, suggesting greater anthropogenic influence on lake water with time. Overall, the rise in HI, P, trace metals, and 15N since European settlement suggests that the lake has become more eutrophic and anthropogenically-impacted in the last 170 years. This highlights the importance of understanding human impacts on water quality to help mitigate any future damage to Utah Lake’s ecology and waterways.
60

The Use of Stable Isotopes to Assess Potential Effects of Algal Blooms on Seagrass and Macroalgae Communities in the Indian River Lagoon, Florida

Azcona, Alexandra 01 May 2014 (has links)
Algal blooms have caused significant losses in seagrass and macroalgae in the Indian River Lagoon, FL. To gain an understanding of these effects, samples of Gracilaria sp., Halodule wrightii, pinfish, and white mullet were taken throughout October and November of 2013. Samples from 2001 of Gracilaria sp., Halodule wrightii, Syringodium filiforme, Thalassia testudinum, pinfish, spotted seatrout, and white mullet were also obtained. Stable isotope data were obtained from these samples and compared by year and species. Halodule wrightii and pinfish had a significantly larger 2013 [delta]C13 values. Halodule wrightii also displayed lower total %C and total %N averages for 2013 when compared to 2001 data. These results may indicate a link between Halodule wrightii and pinfish, with pinfish consuming organisms that use Halodule wrightii as their source of nutrients. The location of collections also seemed to play a role in stable isotope values, as indicated by samples of Halodule wrightii.

Page generated in 0.0262 seconds