• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of alginate scaffolds using X-ray imaging techniques

Guan, Yijing 25 October 2010
Alginate is a popular biomaterial in tissue engineering. When crosslinked with calcium ions (Ca2+), alginate forms a hydrogel which provides necessary mechanical support as a scaffold. The material properties as well as the biological properties of alginate scaffold are of great importance. In this thesis, the aim is to use traditional methods, such as scanning electron microscopy (SEM) and light microscopy, and emerging X-ray imaging techniques, such as micro-computed tomography (micro-CT) and synchrotron radiation (SR) X-ray imaging, to characterize the alginate scaffolds. Firstly, the material properties of freeze-dried alginate scaffolds were evaluated using micro-CT, as it is a non-destructive and non-invasive imaging method, and can provide three-dimensional information. Alginate scaffolds made with different sodium alginate concentrations and frozen to different temperatures were scanned and analyzed in micro-CT. Results indicated that lower freezing temperature and higher sodium alginate concentration lead to smaller pore size and porosity. Secondly, cell culture experiments were carried out to study the biological properties and the interactions of alginate hydrogel with cells. A Schwann cell line was either blended with alginate solution before crosslinking with calcium chloride (CaCl2) or put around alginate gel in the culture dish. Light microscopy of sectioned slices showed that cells surrounding the alginate gel could not grow into the gel, while cells blended with alginate solution before crosslinking could proliferate inside the hydrogel. Cells grown inside a thin slice of alginate gels appeared to be in better condition and were larger in size and also grew in clusters. Thirdly, in order to image soft tissue buried inside alginate gels, such as brain slices, novel imaging methods based on synchrotron radiation (SR) were applied, such as absorption and phase contrast imaging, diffraction-enhanced imaging (DEI) and also combined with computed tomography (CT). Synchrotron-based monochromatic X-ray imaging proved to be good at distinguish objects of similar density, especially biological soft tissue samples, even without any staining material, such as osmium tetroxide (OsO4). These three pieces of research work show the potential in applying the emerging X-ray imaging in soft tissue engineering.
2

Characterization of alginate scaffolds using X-ray imaging techniques

Guan, Yijing 25 October 2010 (has links)
Alginate is a popular biomaterial in tissue engineering. When crosslinked with calcium ions (Ca2+), alginate forms a hydrogel which provides necessary mechanical support as a scaffold. The material properties as well as the biological properties of alginate scaffold are of great importance. In this thesis, the aim is to use traditional methods, such as scanning electron microscopy (SEM) and light microscopy, and emerging X-ray imaging techniques, such as micro-computed tomography (micro-CT) and synchrotron radiation (SR) X-ray imaging, to characterize the alginate scaffolds. Firstly, the material properties of freeze-dried alginate scaffolds were evaluated using micro-CT, as it is a non-destructive and non-invasive imaging method, and can provide three-dimensional information. Alginate scaffolds made with different sodium alginate concentrations and frozen to different temperatures were scanned and analyzed in micro-CT. Results indicated that lower freezing temperature and higher sodium alginate concentration lead to smaller pore size and porosity. Secondly, cell culture experiments were carried out to study the biological properties and the interactions of alginate hydrogel with cells. A Schwann cell line was either blended with alginate solution before crosslinking with calcium chloride (CaCl2) or put around alginate gel in the culture dish. Light microscopy of sectioned slices showed that cells surrounding the alginate gel could not grow into the gel, while cells blended with alginate solution before crosslinking could proliferate inside the hydrogel. Cells grown inside a thin slice of alginate gels appeared to be in better condition and were larger in size and also grew in clusters. Thirdly, in order to image soft tissue buried inside alginate gels, such as brain slices, novel imaging methods based on synchrotron radiation (SR) were applied, such as absorption and phase contrast imaging, diffraction-enhanced imaging (DEI) and also combined with computed tomography (CT). Synchrotron-based monochromatic X-ray imaging proved to be good at distinguish objects of similar density, especially biological soft tissue samples, even without any staining material, such as osmium tetroxide (OsO4). These three pieces of research work show the potential in applying the emerging X-ray imaging in soft tissue engineering.

Page generated in 0.0385 seconds