• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression

Slaoui, Yousri 18 December 2006 (has links) (PDF)
L'objectif de cette thèse est d'appliquer les méthodes d'approximations stochastiques à l'estimation de la densité et de la régression. Dans le premier chapitre, nous construisons un algorithme stochastique à pas simple qui définit toute une famille d'estimateurs récursifs à noyau d'une densité de probabilité. Nous étudions les différentes propriétés de cet algorithme. En particulier, nous identifions deux classes d'estimateurs; la première correspond à un choix de pas qui permet d'obtenir un risque minimal, la seconde une variance minimale. Dans le deuxième chapitre, nous nous intéressons à l'estimateur proposé par Révész (1973, 1977) pour estimer une fonction de régression r:x-> E[Y|X=x]. Son estimateur r_n, construit à l'aide d'un algorithme stochastique à pas simple, a un gros inconvénient: les hypothèses sur la densité marginale de X nécessaires pour établir la vitesse de convergence de r_n sont beaucoup plus fortes que celles habituellement requises pour étudier le comportement asymptotique d'un estimateur d'une fonction de régression. Nous montrons comment l'application du principe de moyennisation des algorithmes stochastiques permet, tout d'abord en généralisant la définition de l'estimateur de Révész, puis en moyennisant cet estimateur généralisé, de construire un estimateur récursif br_n qui possède de bonnes propriétés asymptotiques. Dans le troisième chapitre, nous appliquons à nouveau les méthodes d'approximation stochastique à l'estimation d'une fonction de régression. Mais cette fois, plutôt que d'utiliser des algorithmes stochastiques à pas simple, nous montrons comment les algorithmes stochastiques à pas doubles permettent de construire toute une classe d'estimateurs récursifs d'une fonction de régression, et nous étudions les propriétés asymptotiques de ces estimateurs. Cette approche est beaucoup plus simple que celle du deuxième chapitre: les estimateurs construits à l'aide des algorithmes à pas doubles n'ont pas besoin d'être moyennisés pour avoir les bonnes propriétés asymptotiques.
2

Information diffusion and opinion dynamics in social networks / Dissémination de l’information et dynamique des opinions dans les réseaux sociaux

Louzada Pinto, Julio Cesar 14 January 2016 (has links)
La dissémination d'information explore les chemins pris par l'information qui est transmise dans un réseau social, afin de comprendre et modéliser les relations entre les utilisateurs de ce réseau, ce qui permet une meilleur compréhension des relations humaines et leurs dynamique. Même si la priorité de ce travail soit théorique, en envisageant des aspects psychologiques et sociologiques des réseaux sociaux, les modèles de dissémination d'information sont aussi à la base de plusieurs applications concrètes, comme la maximisation d'influence, la prédication de liens, la découverte des noeuds influents, la détection des communautés, la détection des tendances, etc. Cette thèse est donc basée sur ces deux facettes de la dissémination d'information: nous développons d'abord des cadres théoriques mathématiquement solides pour étudier les relations entre les personnes et l'information, et dans un deuxième moment nous créons des outils responsables pour une exploration plus cohérente des liens cachés dans ces relations. Les outils théoriques développés ici sont les modèles de dynamique d'opinions et de dissémination d'information, où nous étudions le flot d'informations des utilisateurs dans les réseaux sociaux, et les outils pratiques développés ici sont un nouveau algorithme de détection de communautés et un nouveau algorithme de détection de tendances dans les réseaux sociaux / Our aim in this Ph. D. thesis is to study the diffusion of information as well as the opinion dynamics of users in social networks. Information diffusion models explore the paths taken by information being transmitted through a social network in order to understand and analyze the relationships between users in such network, leading to a better comprehension of human relations and dynamics. This thesis is based on both sides of information diffusion: first by developing mathematical theories and models to study the relationships between people and information, and in a second time by creating tools to better exploit the hidden patterns in these relationships. The theoretical tools developed in this thesis are opinion dynamics models and information diffusion models, where we study the information flow from users in social networks, and the practical tools developed in this thesis are a novel community detection algorithm and a novel trend detection algorithm. We start by introducing an opinion dynamics model in which agents interact with each other about several distinct opinions/contents. In our framework, agents do not exchange all their opinions with each other, they communicate about randomly chosen opinions at each time. We show, using stochastic approximation algorithms, that under mild assumptions this opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users choose the opinions to broadcast at each time. We develop next a community detection algorithm which is a direct application of this opinion dynamics model: when agents broadcast the content they appreciate the most. Communities are thus formed, where they are defined as groups of users that appreciate mostly the same content. This algorithm, which is distributed by nature, has the remarkable property that the discovered communities can be studied from a solid mathematical standpoint. In addition to the theoretical advantage over heuristic community detection methods, the presented algorithm is able to accommodate weighted networks, parametric and nonparametric versions, with the discovery of overlapping communities a byproduct with no mathematical overhead. In a second part, we define a general framework to model information diffusion in social networks. The proposed framework takes into consideration not only the hidden interactions between users, but as well the interactions between contents and multiple social networks. It also accommodates dynamic networks and various temporal effects of the diffusion. This framework can be combined with topic modeling, for which several estimation techniques are derived, which are based on nonnegative tensor factorization techniques. Together with a dimensionality reduction argument, this techniques discover, in addition, the latent community structure of the users in the social networks. At last, we use one instance of the previous framework to develop a trend detection algorithm designed to find trendy topics in a social network. We take into consideration the interaction between users and topics, we formally define trendiness and derive trend indices for each topic being disseminated in the social network. These indices take into consideration the distance between the real broadcast intensity and the maximum expected broadcast intensity and the social network topology. The proposed trend detection algorithm uses stochastic control techniques in order calculate the trend indices, is fast and aggregates all the information of the broadcasts into a simple one-dimensional process, thus reducing its complexity and the quantity of necessary data to the detection. To the best of our knowledge, this is the first trend detection algorithm that is based solely on the individual performances of topics

Page generated in 0.1226 seconds