Spelling suggestions: "subject:"algorithme dde coupe"" "subject:"algorithme dee coupe""
1 |
Sécurisation et dimensionnement de réseaux multicouches : modèles et polyèdresBorne, Sylvie 13 December 2006 (has links) (PDF)
Les réseaux de télécommunications évoluent vers des modèles qui consistent en un certain nombre de routeurs IP interconnectés par un réseau optique intelligent. Cette nouvelle infrastructure multicouche nécessite un haut niveau de fiabilité, de telle manière que les services du réseau puissent être rétablis en cas de panne. Dans cette thèse, nous considérons différents problèmes de sécurisation et de dimensionnement liés à cette infrastructure multicouche. Nous donnons des formulations en terme de programmes linéaires mixtes , et nous discutons des polytopes associés. Nous décrivons plusieurs classes d'inégalités valides et étudions les conditions pour qu'elles définissent des facettes. Nous discutons de procédures de séparation pour ces inégalités et induisons des opérations de réduction. Nous développons des algorithmes de coupes et branchements et de coupes génération de colonnes et branchements et présentons une étude expérimentales sur des instances aléatoires et réelles.
|
2 |
Maximum Bounded Rooted-Tree Problem : Algorithms and Polyhedra / Le problème de l’arbre enraciné borné maximum : algorithmes et polyèdresZhao, Jinhua 19 June 2017 (has links)
Étant donnés un graphe simple non orienté G = (V, E) et un sommet particulier r dans V appelé racine, un arbre enraciné, ou r-arbre, de G est soit le graphe nul soit un arbre contenant r. Si un vecteur de capacités sur les sommets est donné, un sous-graphe de G est dit borné si le degré de chaque sommet dans le sous-graphe est inférieur ou égal à sa capacité. Soit w un vecteur de poids sur les arêtes et p un vecteur de profits sur les sommets. Le problème du r-arbre borné maximum (MBrT, de l’anglais Maximum Bounded r-Tree) consiste à trouver un r-arbre borné T = (U, F) de G tel que son poids soit maximisé. Si la contrainte de capacité du problème MBrT est relâchée, nous obtenons le problème du r-arbre maximum (MrT, de l’anglais Maximum r-Tree). Cette thèse contribue à l’étude des problèmes MBrT et MrT.Tout d’abord, ces deux problèmes sont formellement définis et leur complexité est étudiée. Nous présentons ensuite des polytopes associés ainsi qu’une formulation pour chacun d’entre eux. Par la suite, nous proposons plusieurs algorithmes combinatoires pour résoudre le problème MBrT (et donc le problème MrT) en temps polynomial sur les arbres, les cycles et les cactus. En particulier, un algorithme de programmation dynamique est utilisé pour résoudre le problème MBrT sur les arbres. Pour les cycles, nous sommes amenés a considérer trois cas différents pour lesquels le problem MBrT se réduit à certains problèmes polynomiaux. Pour les cactus, nous montrons tout d’abord que le problème MBrT peut être résolu en temps polynomial sur un type de graphes appelé cactus basis. En utilisant une série de décompositions en sous-problèmes sur les arbres et les cactus basis, nous obtenons un algorithme pour les graphes de type cactus.La deuxième partie de ce travail étudie la structure polyédrale de trois polytopes associés aux problèmes MBrT et MrT. Les deux premiers polytopes, Bxy(G,r,c) et Bx(G,r,c) sont associés au problème MBrT. Tous deux considèrent des variables sur les arêtes de G, mais seuls Bxy(G,r,c) possède également des variables sur les sommets de G. Le troisième polytope, Rx(G,r), est associé au problème MrT et repose uniquement sur les variables sur les arêtes. Pour chacun de ces trois polytopes, nous étudions sa dimension, caractérisons certaines inégalités définissant des facettes, et présentons les moyens possibles de décomposition. Nous introduisons également de nouvelles familles de contraintes. L’ajout de ces contraintes nous permettent de caractériser ces trois polytopes dans plusieurs classes de graphes.Pour finir, nous étudions les problèmes de séparation pour toutes les inégalités que nous avons trouvées jusqu’ici. Des algorithmes polynomiaux de séparation sont présentés, et lorsqu’un problème de séparation est NP-difficile, nous donnons des heuristiques de séparation. Tous les résultats théoriques développés dans ce travail sont implémentés dans plusieurs algorithmes de coupes et branchements auxquels une matheuristique est également jointe pour générer rapidement des solutions réalisables. Des expérimentations intensives ont été menées via le logiciel CPLEX afin de comparer les formulations renforcées et originales. Les résultats obtenus montrent de manière convaincante la force des formulations renforcées. / Given a simple undirected graph G = (V, E) with a so-called root node r in V, a rooted tree, or an r-tree, of G is either the empty graph, or a tree containing r. If a node-capacity vector c is given, then a subgraph of G is said to be bounded if the degree of each node in the subgraph does not exceed its capacity. Let w be an edge-weight vector and p a node-price vector. The Maximum Bounded r-Tree (MBrT) problem consists of finding a bounded r-tree T = (U, F) of G such that its weight is maximized. If the capacity constraint from the MBrT problem is relaxed, we then obtain the Maximum r-Tree (MrT) problem. This dissertation contributes to the study of the MBrT problem and the MrT problem.First we introduce the problems with their definitions and complexities. We define the associated polytopes along with a formulation for each of them. We present several polynomial-time combinatorial algorithms for both the MBrT problem (and thus the MrT problem) on trees, cycles and cactus graphs. Particularly, a dynamic-programming-based algorithm is used to solve the MBrT problem on trees, whereas on cycles we reduce it to some polynomially solvable problems in three different cases. For cactus graphs, we first show that the MBrT problem can be solved in polynomial time on a so-called cactus basis, then break down the problem on any cactus graph into a series of subproblems on trees and on cactus basis.The second part of this work investigates the polyhedral structure of three polytopes associated with the MBrT problem and the MrT problem, namely Bxy(G, r, c), Bx(G, r, c) and Rx(G, r). Bxy(G, r, c) and Bx(G, r, c) are polytopes associated with the MBrT problem, where Bxy(G, r, c) considers both edge- and node-indexed variables and Bx(G, r, c) considers only edge-indexed variables. Rx(G, r) is the polytope associated with the MrT problem that only considers edge-indexed variables. For each of the three polytopes, we study their dimensions, facets as well as possible ways of decomposition. We introduce some newly discovered constraints for each polytope, and show that these new constraints allow us to characterize them on several graph classes. Specifically, we provide characterization for Bxy (G, r, c) on cactus graphs with the help of a decomposition through 1-sum. On the other hand, a TDI-system that characterizes Bx(G,r,c) is given in each case of trees and cycles. The characterization of Rx(G,r) on trees and cycles then follows as an immediate result.Finally, we discuss the separation problems for all the inequalities we have found so far, and present algorithms or cut-generation heuristics accordingly. A couple of branch-and-cut frameworks are implemented to solve the MBrT problem together with a greedy-based matheuristic. We compare the performances of the enhanced formulations with the original formulations through intensive computational test, where the results demonstrate convincingly the strength of the enhanced formulations.
|
3 |
Designing optical multi-band networks : polyhedral analysis and algorithms / Conception de réseaux optiques multi-bandes : Analyse polyédrale et algorithmesBenhamiche, Amal 12 December 2013 (has links)
Dans cette thèse, on s'intéresse à deux problèmes de conception de réseaux, utilisant la technologie OFDM multi-bandes. Le premier problème concerne la conception d'un réseau mono-couche avec contraintes spécifiques. Nous donnons une formulation en PLNE pour ce problème et étudions le polyèdre associé à sa restriction sur un arc. Nous introduisons deux familles d'inégalités valides définissant des facettes et développons un algorithme de coupes et branchements pour le problème. Nous étudions la variante multicouche du problème précédent et proposons plusieurs PLNE pour le modéliser. Nous identifions plusieurs familles de facettes et discutons des problèmes de séparation associés. Nous développons un algorithme de coupes et branchements utilisant l'ensemble des contraintes identifiées. Enfin, une formulation compacte et deux formulations basées sur des chemins sont proposées pour le problème. Nous présentons deux algorithmes de génération de colonnes et branchements pour le problème. / In this thesis we consider two capacitated network design (CND) problems, using OFDM multi-band technology. The first problem is related to single-layer network design with specific requirements. We give an ILP formulation for this problem and study the polyhedra associated with its arc-set restriction. We describe two families of facet defining inequalities. We devise a Branch-and-Cut algorithm for the problem. Next, we investigate the multilayer version of CND using OFDM technology. We propose several ILP formulations and study the polyhedron associated with the first (cut) formulation. We identify several classes of facets and discuss the related separation problem. We devise a Branch-and-Cut algorithm embedding valid inequalities of both single-layer and multilayer problems. The second formulation is compact, and holds a polynomial number of constraints and variables. Two further path formulations are given which yield two efficient Branch-and-Price algorithms for the problem.
|
Page generated in 0.0513 seconds