• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A model for inductive plasma wind tunnels

Magin, Thierry E. B. 10 June 2004 (has links)
A numerical model for inductive plasma wind tunnels is developed. This model provides the flow conditions at the edge of a boundary layer in front of a thermal protection material placed in the plasma jet stream at the outlet of an inductive torch. The governing equations for the hydrodynamic field are derided from the kinetic theory. The electromagnetic field is deduced from the Maxwell equations. The transport properties of partially ionized and unmagnetized plasma in weak thermal nonequilibrium are derived from the Boltzmann equation. A kinetic data base of transport collision integrals is given for the Martian atmosphere. Multicomponent transport algorithms based upon Krylov subspaces are compared to mixture rules in terms of accuracy and computational cost. The composition and thermodynamic properties in local thermodynamic equilibrium are computed from the semi-classical statistical mechanics. The electromagnetic and hydrodynamic fields of an inductive wind tunnel is presented. A total pressure measurement technique is thoroughly investigated by means of numerical simulations.
2

A model for inductive plasma wind tunnels

Magin, Thierry 10 June 2004 (has links)
A numerical model for inductive plasma wind tunnels is developed. This model provides the flow conditions at the edge of a boundary layer in front of a thermal protection material placed in the plasma jet stream at the outlet of an inductive torch. The governing equations for the hydrodynamic field are derided from the kinetic theory. The electromagnetic field is deduced from the Maxwell equations. The transport properties of partially ionized and unmagnetized plasma in weak thermal nonequilibrium are derived from the Boltzmann equation. A kinetic data base of transport collision integrals is given for the Martian atmosphere. Multicomponent transport algorithms based upon Krylov subspaces are compared to mixture rules in terms of accuracy and computational cost. The composition and thermodynamic properties in local thermodynamic<p>equilibrium are computed from the semi-classical statistical mechanics.<p>The electromagnetic and hydrodynamic fields of an inductive wind tunnel is presented. A total pressure measurement technique is thoroughly investigated by means of numerical simulations.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.1538 seconds