• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of coatings and sealers used to mitigate alkali-silica reaction and/or delayed ettringite formation in hardened Concrete

Wehrle, Evan Richard, 1985- 15 September 2015 (has links)
Since 2006, research funded by the Texas Department of Transportation (TxDOT) has evaluated the use of coatings and sealers for mitigating expansion due to alkali-silica reaction (ASR) and/or delayed ettringite formation (DEF) in hardened concrete. The report herein includes a project summary of previous work in Phase I, led by Racheal Lute (2008) and Charles Rust (2009). The Phase II research, described in this thesis, established concrete exposure blocks and NCHRP 244 Series II testing as the cornerstones of characterizing coating effectiveness. The studies assessed coating system performance by examining the contribution of steel reinforcement, the effects of aggregate reactivity, the size limitations of treatments, and the impact of painted concrete substrates. Lastly, this thesis describes the preliminary results of a field study site of columns supporting a flyover, and a concrete exposure block site in Houston, Texas. Overall, the results are encouraging as several coatings have reduced expansion by lowering internal relative humidity.
2

Biomass and Coal Fly Ash in Concrete: Strength, Durability, Microstructure, Quantitative Kinetics of Pozzolanic Reaction and Alkali Silica Reaction Investigations.

Wang, Shuangzhen 19 April 2007 (has links) (PDF)
Biomass represents an important sustainable energy resource, with biomass-coal cofiring representing among the most effective and cost efficient CO2 reduction strategies. Fly ash generated during coal combustion represents a technically advantageous, inexpensive, and environmentally beneficial admixture in concrete production, partially replacing cement. However, strict interpretation of American Society of Testing and Materials (ASTM) and American Concrete Institute (ACI) standards prohibits use of fly ashes from any source other than coal in concrete production; therefore, fly ash from biomass coal cofiring is excluded from use in concrete. This dissertation discusses biomass impacts on concrete properties through experiments conducted on several combinations of blended and pure biomass fly ash in concrete mixtures to determine the effects on freshly mixed concrete, strength and durability of hardened concrete, and implication for long-term material properties. The results show that the performance of biomass and blended biomass-coal fly ash is comparable to that of traditional (neat) coal fly ash. Pozzolanic reactions occur simultaneously but not necessarily proportionally to strength development. Mixtures of biomass and coal fly ash in all proportions mitigate alkali-silica-reaction-based (ASR-based) expansion in concrete. Biomass-specific results indicate that biomass-containing fly ash samples can generate 3-6 times the strength of some neat coal fly ash samples in terms of pozzolanic reactions and that biomass-containing fly ash samples have better or comparable ASR mitigation performance relative to neat coal fly ash. Biomass fly ash applications in concrete production involve pozzolanic, cementitious, and ASR reactions in combination with mixture compositions and preparation techniques to dictate ultimate properties. In these practical applications, biomass fly ash demonstrates no consistent improvement or deprecation of concrete properties relative to coal fly ash. Quantitative pozzolanic reaction mechanism and kinetic analyses indicate biomass and coal fly ashes exhibit comparable reaction rates and react by similar mechanisms. The general conclusion from the experiments is that biomass-containing fly ash, when used in concrete, performs comparable to or better than similar neat coal fly ash preparations in most respects; Substantial efforts were made to ensure samples represent typical commercial samples. Therefore, there exists no reason to exclude biomass from cofiring applications on the basis of fly ash performance in concrete and the related standards should be revised.
3

Dedolomitization and Alkali-Silica Reactions in Ohio-Sourced Dolostone Aggregates

Smeltz, Jonathan Brett 08 May 2018 (has links)
No description available.

Page generated in 0.0648 seconds