• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 3
  • 2
  • Tagged with
  • 65
  • 65
  • 32
  • 20
  • 12
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The single source chemical vapour deposition of alkaline earth metal oxide thin films

Hill, Matthew Roland, Chemistry, Faculty of Science, UNSW January 2006 (has links)
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
22

The single source chemical vapour deposition of alkaline earth metal oxide thin films

Hill, Matthew Roland, Chemistry, Faculty of Science, UNSW January 2006 (has links)
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
23

A new synthetic strategy for low-dimensional compounds : Lone pair cations and alkaline earth spacers

Fredrickson, Rie Takagi January 2008 (has links)
<p>Complex transition metals oxyhalides containing a lone pair element, such as tellurium (IV), form an attractive research field because there is a high probability of finding new low-dimensionally arranged compounds and, particularly, a low-dimensionally arranged transition metals substructures, leading to interesting physical properties. Tellurium (IV) can drive the formation of many unusual structures because of its stereochemically active lone pair electrons, E. It commonly takes a coordination of three or four oxygen atoms to form either a TeO3E square pyramid or a TeO3+1E trigonal bipyramid. These lone pairs are very important players involved in lowering the dimensionality of crystal structures. Previous studies in transition metal tellurium (IV) oxohalide quarternary systems revealed a family of compounds, many of which exhibit interesting properties e.g. magnetic frustration. The unique point of this thesis is to employ alkaline earth elements (AE) to augment this ability of lone pair elements to lower the dimensionality of the transition metal arrangements. By this double usage of “chemical scissors” (a lone pair element used in conjunction with alkaline earth elements) we obtained new types of low-dimensionally arranged compounds.</p><p>This thesis is focused on the syntheses and characterization of a series of compounds in the pentanary (five components) system AE-TeIV-TM-O-X (AE=alkaline earth metal, TM=transition metal and X=halogen), in which nine new compounds were found. The crystal structures of each of these compounds were determined by the single crystal X-ray diffraction data.</p>
24

A new synthetic strategy for low-dimensional compounds : Lone pair cations and alkaline earth spacers

Fredrickson, Rie Takagi January 2008 (has links)
Complex transition metals oxyhalides containing a lone pair element, such as tellurium (IV), form an attractive research field because there is a high probability of finding new low-dimensionally arranged compounds and, particularly, a low-dimensionally arranged transition metals substructures, leading to interesting physical properties. Tellurium (IV) can drive the formation of many unusual structures because of its stereochemically active lone pair electrons, E. It commonly takes a coordination of three or four oxygen atoms to form either a TeO3E square pyramid or a TeO3+1E trigonal bipyramid. These lone pairs are very important players involved in lowering the dimensionality of crystal structures. Previous studies in transition metal tellurium (IV) oxohalide quarternary systems revealed a family of compounds, many of which exhibit interesting properties e.g. magnetic frustration. The unique point of this thesis is to employ alkaline earth elements (AE) to augment this ability of lone pair elements to lower the dimensionality of the transition metal arrangements. By this double usage of “chemical scissors” (a lone pair element used in conjunction with alkaline earth elements) we obtained new types of low-dimensionally arranged compounds. This thesis is focused on the syntheses and characterization of a series of compounds in the pentanary (five components) system AE-TeIV-TM-O-X (AE=alkaline earth metal, TM=transition metal and X=halogen), in which nine new compounds were found. The crystal structures of each of these compounds were determined by the single crystal X-ray diffraction data.
25

The distribution of some selected alkali metals and alkaline earths in the Stronghold granite, Cochise County, Arizona

Bock, Charles Mitchell, 1935- January 1962 (has links)
No description available.
26

The single source chemical vapour deposition of alkaline earth metal oxide thin films

Hill, Matthew Roland, Chemistry, Faculty of Science, UNSW January 2006 (has links)
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
27

The occurrence and distribution of lead and related alkaline earth metals in marine ecosystems

Burnett, Michael Welch. January 1979 (has links)
Thesis (Ph. D.)--California Institute of Technology, 1979. / Includes bibliographical references (leaves [146]-[162]).
28

Estudos opticos de defeitos produzidos por irradiacao em monocristais de LiF:Mg

RANIERI, IZILDA M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:29:14Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:50Z (GMT). No. of bitstreams: 1 01098.pdf: 1845667 bytes, checksum: 1511b170df22e6ca5456a95e441d26c5 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Energia Atomica - IEA
29

Contribuicao ao conhecimento dos efeitos da radiacao em cristais de KCl com impurezas de Sr

SORDI, GIAN MARIA A.A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:24:22Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:23Z (GMT). No. of bitstreams: 1 01033.pdf: 3057089 bytes, checksum: 46182f046ab7f97cb50760710d36ed79 (MD5) / Tese (Doutoramento) / IEA/T / Centro Brasileiro de Pesquisas Fisicas - CBPF/RJ
30

Avaliacao de parametros de retencao dos produtos de fissao no solo

ENDO, LAURA S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:26:00Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:45Z (GMT). No. of bitstreams: 1 11283.pdf: 4904104 bytes, checksum: 807b2f78f5e48f23be353b0240c9b4b4 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Energia Atomica - IEA

Page generated in 0.0516 seconds