• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pincer-Liganden mit fluorierten Alkylketten

Hermes, Anja 08 January 2015 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Synthese von Pincer-Ligandenvor-läufern mit fluorierten Alkylketten –(CH2)2Rf6 (Rf6 = C6F13) an Sauerstoff- bzw. Phosphorhaftatomen. Darüber hinaus stehen die Bildung hochfluorierter Lithium-, Palladium-, Ruthenium- sowie Aluminium-Pincer-Komplexe und die Reaktivitäts-studien für diese neuartigen Komplexe im Fokus. Für vergleichende Untersuchungen war ebenso die Synthese der analogen, nicht fluorierten Verbindungen von Interesse. Eine Mischung aus in situ hergestelltem (NC5H3)-1,3-(CH2P((CH2)2(CF2)5CF3)2)2 (13) und [Ru(2Me-C3H4)2(cod)] kann die Dehydrogenierung von Cyclooctan bei vergleichsweise niedrigen Temperaturen von 80 °C katalysieren. Interessant ist die je nach Lösungsmittel unterschiedliche Produktbildung. Die Lithium- und Aluminiumkomplexe [Li(C6H3-2,6-(CH2O(CH2)2(CF2)5CF3)2)] (21), [Li(C6H3 2,6 (CH2OCH3)2)] (22), [Al((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)(CH3)2] (28), [Al((C6H3)-2,6-(CH2OCH3)2)I2] (29), [Al((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)I2] (31) wurden erfolgreich synthetisiert und charakterisiert. Mittels [Al((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)I2] (31) konnten diverse aromatische Verbindungen wie Benzol, Toluol oder Pentafluorbenzol dehydrogenierend gekuppelt werden. Weiterhin wurden die Palladiumkomplexe [Pd(Cl)((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)] (34) und [Pd(NCCH3)((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)][PF6] (36), [Pd(Cl)((C6H3)-2,6-(CH2OCH3)2] (37) und [Pd(NCCH3)((C6H3)-2,6-(CH2OCH3)2][PF6] (38) hergestellt und charakterisiert. / The current thesis is concerned with the syntheses of pincer ligand precursors with fluorinated alkyl chains –(CH2)2Rf6 (Rf6 = C6F13), the so called „ponytails“, at oxygen or phosphorous donor atoms. Furthermore, this work focuses on the formation of highly fluorinated lithium, palladium, ruthenium or alumina pincer complexes and considering reactivity studies of these novel compounds. For comparative investigations the syntheses of the analog non-fluorinated compounds was of great interest. A mixture of in situ synthesized (NC5H3)-1,3-(CH2P((CH2)2(CF2)5CF3)2)2 (13) and [Ru(2Me-C3H4)2(cod)] catalyses the dehydrogenation of cyclooctane at relatively low temperatures of 80 °C. Depending on the used solvent cyclooctene or cyclooctatriene can be received as the single product, respectively. The lithium and alumina complexes [Li(C6H3-2,6-(CH2O(CH2)2(CF2)5CF3)2)] (21), [Li(C6H3 2,6 (CH2OCH3)2)] (22), [Al((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)(CH3)2] (28), [Al((C6H3)-2,6-(CH2OCH3)2)I2] (29), and [Al((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)I2] (31) were synthesized and characterized succesfully. With the complex [Al((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)I2] (31) a diversity of aromatic compounds like benzene, toluene or pentafluorobenzene can be coupled after dehydrogenation. Moreover, the palladium complexes [Pd(Cl)((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)] (34), [Pd(NCCH3)((C6H3)-2,6-(CH2O(CH2)2(CF2)5CF3)2)][PF6] (36), [Pd(Cl)((C6H3)-2,6-(CH2OCH3)2] (37) and [Pd(NCCH3)((C6H3)-2,6-(CH2OCH3)2][PF6] (38) were synthesized and characterized.
2

Intercalation Of Alkyl Surfactants In Layered Double Hydroxides : The Anchored Bilayer In Dispersions And The Condensed Phase

Naik, Vikrant Vijay 11 1900 (has links) (PDF)
Bilayers formed by molecules that possess long alkyl hydrophobic tails are ubiquitous in the natural world manifesting both in biological systems as well as in chemistry. The lipid bilayer is an integral feature of cell membranes of living systems with functions that are of critical importance to the life of the cell. Long chain amphiphilic surfactant molecules can be introduced within the interlamellar region of layered inorganic host lattices to form anchored alkyl chainbilayerswithinthegalleries.Theintercalatedbilayerbearsastriking resemblance to lipid bilayers. However, unlike lipid bilayers where individual molecules can undergo lateral diffusion and also flip-flop between layers the anchored bilayer is characterized by the total absence of translational mobility. The degrees of freedom of the alkyl chains of the anchored bilayer are restricted to changes in conformation. This thesis describes a detailed investigation of the anchored bilayer formed by the intercalation of the anionic surfactant dodecyl sulphate (DDS) in a layered solid, Mg-Al Layered Double Hydroxide(Mg-AlLDH) using both experimental measurements and Molecular Dynamics (MD) simulations (Chapter 2). The thesis is organized as two parts. The first (Chapters 2 -4) deals with the anchored bilayer in the condensed phase -the conditions for the formation of the bilayer arrangement of the intercalated surfactant chains and the conformation and dynamics of the alkyl chains of the surfactant in the galleries of the layered solid. The surfactant intercalated Mg-AlLDH-DDS may be delaminated in nonpolar solvents to give colloidal dispersions of individual Mg-Al LDH sheets with the DDS surfactant chains remaining tethered to the inorganic sheets(Scheme 1).The second part of thesis(Chapters 5 -9)describe studies on the dispersions of the Mg-AlLDH-DDS in toluene. A summary of the results of the of the investigations of the anchored bilayer, formed by the intercalation of DDS ions in Mg-Al LDH, in the condensed and the dispersed phases is presented in the concluding chapter(Chapter10). Layered Double Hydroxides(LDH) are insulating lamellar solids of the general chemical formula[M’(1-x) Mx(OH)2], where M’ is a divalent metal ion and M a trivalent ion. Their structure may be derived from that of Brucite, Mg(OH)2, by isomorphous substitution of apart of the Mg2+ by trivalent ions like Al3+ with electrical neutrality maintained by interlamellar exchangeable ions. The studies reported in this thesis are on an Mg-Al LDH,Mg(1−x)Alx(OH)2, x ranging from 0.17 to 0.37. Dodecyl sulphate surfactant ions have been ion-exchange intercalated in Mg-AlLDH (Chapter 3). By varying the Mg-Al ratio, differing packing densities of the surfactant chains in the interlamellar space of the Mg-Al LDH-DDS are realized. At high packing densities the alkyl chains of the intercalated dodecyl sulphate ions anchored on opposing Mg-Al LDH sheets are arranged as bilayers while at lower packing densities the surfactant chains form a monolayer with the chains oriented flat in the galleries. This composition driven monolayer to bilayer transformation in the surfactant intercalated Mg-AlLDH-DDS is also reproduced by MD simulations. The simulations also indicate that there are profound differences in the factors that decide the arrangement of the surfactant chains. In the bilayer arrangement it is dispersive van der Waals interactions between the chains in opposing layers that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged head-group of the DDS anion dominate. The conformation and dynamics of the alkyl chains of the intercalated surfactant chains in both the monolayer and bilayer arrangements as well as the effect of packing density on these parameters is reported in Chapter 4. The conformation was studied using spectroscopic techniques, infra-red, Raman and 13C Nuclear Magnetic Resonance (NMR) while the dynamics by Variable Contact Time Cross Polarization Magic Angle Spinning(VCT -CPMAS) and2DWidelineSeparation(2DWiSe)NMR techniques. The results showed the expected trends; the concentration of gauche defects and the dynamics of the chains increase with decreasing packing density. There is, however a sharp increase in the gauche concentration and conformational mobilities of the intercalated surfactant chains associated with the bilayer to monolayer transformation. The results of the MD simulations, too, reflect these trends. The second part of thesis describes the delamination of the intercalated anchored bilayer (Mg-AlLDH-DDS) in non-polar solvents. Delamination results in a colloidal dispersion Of the anchored bilayer, isolated Mg-AlLDH sheets with the DDS chains tethered to them, as neutral nanosheets of nanometer thickness and micron size. With increasing concentration of the anchored bilayers in the solvent a gel state is realized. The sol to gel transformation of the dispersions of the anchored bilayer in toluene has been investi-gated. Frequency dependent rheology measurements (Chapter6) were used to investigate the visco-elastic properties of the dispersions and Small Angle X-ray Scattering (SAXS) measurements(Chapter 7) to understand the structure and shape of the nanosheets. The rheology experiments showed that the dispersions irrespective of their concentrations showed shear thinning. The SAXS results indicate a tactoid structure of the dispersions as well as in the gel phase. At higher concentrations, the X-ray scattering curves indicated that the layers stack loosely with an interlamellar space of ~ 39 Å , a value much larger than the interlayer lattice spacing of solid Mg-AlLDH-DDS( ~ 27 Å). The nature of interactions between solvent molecules and the anchored DDS chains were probed by 1Hand 2H NMR measurements(Chapter8). A clear association between the toluene molecules and the alkyl chains of the anchored surfactant was observed. 2D NOESY experiments established that there are toluene molecules in close proximity that interact with the methyl tail of the anchored surfactant. NMR measurements were also able to distinguish two types of solvent molecules based on their widely differing mobilities. MD simulations(Chapter9)of the dispersed anchored bilayer are able to reproduce the essential features of the experimental observations including the formation of a loosely bound lamellar structure. It also provides an explanation on how the spectroscopic observation of motional heterogeneity gives rise to the viscoelastic properties of the dispersed anchored bilayer.
3

Structure, Organization And Phase Transitions In Anchored Alkyl Chain Bilayers In Layered Organic-Inorganic Hybrids

Barman, Sudip 05 1900 (has links)
This thesis deals with the conformation and phase-transitions in anchored alkyl chain bilayer assemblies in organic-inorganic hybrids. The alkyl chain bilayers in organic-inorganic hybrids bear a striking resemblances to the lipid bilayers that are an integral part of biomembranes. However, unlike the lipid bilayer where individual lipid molecules can undergo the total absence of translational mobility. The anchored bilayer are, therefore, the simplest model system for understanding the structure, organization and thermal behaviour of alkyl-chain assemblies. The anchored bilayer in the organic-inorganic hybrids also offer the advantage that unlike the lipid bilayers that are essentially fluid like, these are solids and therefore, amenable to study by a variety of solid-state spectroscopic techniques. The objective of the present works was to determine the organization, conformation and thermal behaviour of alkyl chains in these class of materials- the alkyl ammonium layered pervoskites and in zinc soaps of saturated and unsaturated fatty acids. The preparation, conformation and orientation of alkyl chains assemblies in the layered(CH3CH2)nNH3)2PbI4 is described in chapter 2 and the phase-transitions and associated changes in conformation in presented in chapter 3. In chapter 4 the preparation, structure, conformation and phase-transitions of alkyl chains in the m = 2 member of the layered (CH3NH3)m-1(CH3CH2)nNH3)2PbmI3m+1 Ruddleson-Popper series is discussed. The thermal behavior of zinc soaps of saturated fatty acids is discussed in chapter 5 and formation and phase-transitions in solid solution between saturated zinc soaps of differing chain lengths, zinc stearate and zinc myristate is presented in chapter 6. The effect of a rigid link or double bond on the evolution of conformational disorder and phase-transitions of other-wise flexible hydrocarbon chains is explored in chapter 7 by comparing the thermal behavior of zinc oleate and zine elaidate with that of zinc stearate. A unique feature of the zinc soaps is that they form solid solutions over the entire composition range feature of the zinc soaps is that they form solid solutions over the entire composition range between soaps of saturated and unsaturated fatty acids. The formation and conformation of alkyl chains in the solid solution of zinc stearate and zinc oleate is discussed in chapter 8.

Page generated in 0.0286 seconds