• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advancing quantitative understanding of flow-ecology relations in Alpine rivers

Vallefuoco, Francesca 28 June 2022 (has links)
Anthropic impacts adversely affect the productivity, integrity, connectivity, and resilience of riverine ecosystems, with widespread cumulative effects on the biota and biodiversity. The natural flow regime is a fundamental driver of physical and chemical processes, determining the morphological profile of the river systems and sustaining the complex network of ecological interactions and biological patterns. Therefore, in order to reach the environmental goals required by the binding legislation, and achieve a sustainable use of water resources, it is urgent to understand the mechanisms behind changes in the structure of biological communities along gradients of human disturbances which affect the flow regime. Indicators based on macroinvertebrates are widely used to assess the ecological status of water bodies, given their sensitivity/tolerance to pollution. However, in Alpine running waters, where chemical quality is less impacted than in lowland rivers, it is particularly important and valuable to detect the hydro-morphological alterations, and to discriminate them from chemical degradation, based on the responses of benthic macroinvertebrates to such multiple stressors. Therefore, this thesis aims at: i) examining the taxonomic and functional responses of macroinvertebrate communities to the different anthropogenic pressures acting on river systems; ii) evaluating the taxa/functional traits which mostly discriminate between hydrological and morphological alterations, and chemical degradation, to support effective bioindication methods. Focus of the research is to assess the macroinvertebrate community responses to the alterations caused by flow regulation and morphological alterations, which include water abstraction, diversion, stocking and the intermittent release of water from hydropower plants, banks artificialization and construction of weirs, dams, and other structures, each of these with environmental consequences of different scale and magnitude, such as the interruption of the longitudinal continuity, residual flow release and hydropeaking. The first part of this thesis is based on two empirical field studies, following respectively a manipulative and a mensurative approach, and focuses on changes in the taxonomic and functional composition due to river regulation and hydrological alterations. The first study, conducted in a set of seminatural streamside experimental flumes, simulates a residual flow stretch by reducing the discharge of the downstream sections (treatment) to 50% of the discharge of the upstream sections (control). Even within the short-term of our experiment (i.e., 3 weeks from the beginning of the simulation), we successfully simulated a small run-of-the river water abstraction and we recorded substantial changes in the EPT (Ephemeroptera, Plecoptera and Trichoptera) benthic assemblages. In fact, we observed shifts in functional (rather than taxonomic) EPT community composition over time, likely due to the active drift, from a typically rheophile to a more limnophile one as a response to the stress imposed by the flow reduction, related to decrease of flow. In the second study, we investigated the effectiveness of a hydropeaking mitigation measure on flow and biotic components, in a case study of hydropeaking reduction on a 10-km reach of the Noce Stream, a unique approach for Alpine streams to date. The hydrological analysis conducted applying two hydropeaking quantification indices (HP1 and HP2 of Carolli et al., 2015, and the COSH method by Sauterleute & Charmasson. 2014) confirmed a partial mitigation of the hydropeaking in the stretch. As a consequence of the change in hydrological regime, we observed a different taxonomic and functional recovery in the benthic and hyporheic communities. In fact, macrobenthos was negatively affected by the reduced dilution of point and diffuse pollution; conversely, the hyporheic communities showed an increase in diversity and abundance of interstitial taxa, especially those exclusive to the hyporheic zone, likely due to changes in the interstitial space availability, brought by a reduction of clogging caused by fine sediments which were previously released with each hydropeaking wave. The second part of the thesis is based on large dataset analysis where expert knowledge has been integrated with machine learning and data-based approaches: the focus of thesis shifts towards a holistic approach, extending the investigation to the entire watershed of the Trentino Province by including macroinvertebrate field data collected between 2009 and 2019 from 160 sampling sites, distributed over 90 rivers and streams. Based on the expertise of field operators from the local Environment Agency (APPA), and the quality indices currently used according to the Water Framework Directive (WFD), all the APPA stream sites were classified according to the presence of known hydrological, morphological, and chemical alterations, including the co-occurrence of two or more alteration types; sites in pristine conditions were also identified. Seasonality, stream order and type, and other stream characteristics associated with the elevation gradient are important in flow-ecology investigation, and for this reason were included in the analysis. Moreover, these features are proxies for other variables which are closely related with the structure of the benthic community, such as current velocity, organic matter availability and substrate composition, and can also be related to the probability of expecting the presences of small hydropower plants and/or a diffuse or localized pollution sources. This second section of the thesis is divided into two parts: the first part describes the initial overall qualitative and quantitative analysis, which was conducted to determine to which extent a functional diversity-based approach better recognizes patterns in the benthic community compared to the WFD diversity indices. The second part describes the machine learning approach which we used to examine the degree to which a-priori expert classification matched data-driven classification based on the taxonomic and functional composition of benthic macroinvertebrates across different binary classification disturbances. A Random Forest analysis was performed independently on benthic-macroinvertebrate abundance (expressed as number of individuals per m2) and their functional compositions. The majority of stream sites were a-priori classified as impacted by either one or a combination of anthropogenic alterations (80%), with only 16% of sites in reference or pristine conditions. We observed high variability in benthic community assemblages, likely due to complex environmental interactions and caused by the cumulative/synergic effect of different alterations that negatively affect the discrimination between stressor-specific responses. The overall results of these large-dataset based analyses showed relevant outcomes, the main one being the good discrimination of unaltered sites from the altered ones, but a low discriminating power for the types of alteration (hydrological, morphological, pollution pf combination of two or three of them) based on taxonomic and functional composition of the benthic communities. The functional parameters directly related to the stream longitudinal preference, microhabitat preferences, flow velocity, hydrological and thermal regime, and food availability in the river network, well the most suitable to identify any type of river degradation. A further step in the detection of significant indicator taxa/traits was achieved with the machine learning approach, which resulted in robust and dependable predictive models, that identified the specific taxa and traits related to different stressors, thus representing a promising tool to support environmental assessment and water management. Overall, this thesis contributes to the identification of appropriate indicators based on macroinvertebrates taxonomic and functional sensitivity to different specific stressors, to use in the assessment of the Ecological Status of streams in mountain areas, with relevant outcomes for the water management of Alpine running waters, with particular regard to the definition of environmental flows, and to the mitigation of hydropeaking.
2

Transferts des polluants organiques persistants de l'atmosphère aux milieux aquatiques de montagne / Transfers of persistent organic pollutants from the atmosphere to aquatic system in mountain environment

Marçais, Johanna 16 February 2017 (has links)
Les sources d’émissions de polluants organiques persistants (POP) dans l’atmosphère sont relativement bien connues. Une fois dans ce compartiment sous formes gazeuse et/ou particulaire, ces composés sont transportés à plus ou moins longue distance puis éliminés en fonction des conditions météorologiques par dépôts secs (aérosols) ou humides (pluie et neige). L’impact des POP est planétaire, tous les milieux de l’environnement sont touchés et les milieux aquatiques de montagne ne sont pas épargnés. Plusieurs études ont rapportées la présence de Polychlorobiphényles (PCB) et d’Hydrocarbures Aromatiques Polycycliques (HAP) sur des lacs d’altitude européens où l’atmosphère est l’unique source de pollution. A ce jour, très peu d’études ont été menées en milieux de montagne pour comprendre et identifier les mécanismes de transfert à l’interface entre l’air et l’eau. Ces travaux de thèse sont ainsi focalisés sur les échanges de POP à l’interface air-eau en milieu aquatique de montagne. Dans le but de définir le rôle de l’atmosphère sur ces milieux et de calculer des flux de POP, deux systèmes hydriques distincts ont été étudiés : un lac d’altitude (Lac de la Muzelle, Oisans) et une rivière alpine (Arc, vallée de la Maurienne). Deux familles de POP ont été ciblées pour leurs différentes propriétés physico-chimiques : les HAP et les PCB. Pour l’étude de ces milieux de montagne parfois difficile d’accès, une stratégie d’échantillonnage passive a été choisie. Les systèmes d’échantillonnage employé ont été améliorés, développés au laboratoire ou utilisés tel quel pour échantillonner distinctement toutes les formes de POP dans l’air (gaz, particules, dépôts secs et humides) et dans l’eau (phase dissoute et particulaire). Une comparaison des systèmes d’échantillonneurs atmosphériques passifs a été réalisée pour définir le plus fiable et représentatif. Ces études de transferts air-eau ont été conduites sur le lac d’altitude pendant deux périodes estivales (2014 et 2015) et un suivi de deux ans a été réalisé (2014 à 2016) sur la rivière alpine.Le rôle de l’atmosphère en période estivale a pu être ainsi défini sur le lac d’altitude et des flux d’échanges de polluants à l’interface ont pu être calculés. La rivière alpine étant un système hydrique dynamique plus complexe pour l’étude des transferts air-eau et la quantification de flux, un suivi spatio-temporel de la contamination a tout d’abord été réalisé le long de la rivière et une première approche de calcul de flux de polluants à l’interface a été appliquée. / Atmospheric sources of persistent organic pollutants (POPs) are relatively well known. Once in this compartment under both gas and particulate forms, these compounds are carried on more or less long range. Then, pollutants are eliminated by dry (aerosol) or wet (rain, snow) depositions according to meteorological conditions. The global planetary distribution of POPs affects all environments and mountain aquatic environments are not spared. Several studies on European high altitude mountain lakes have reported the presence of Polychlorinated Biphenyls (PCBs) and Polycyclic Aromatic Hydrocarbons (PAHs). In these remote areas, the atmospheric compartment is the unique source of pollution. Few studies were conducted in order to understand and identify transfer mechanisms at the air-water interface in mountain. So, this thesis focused on POP exchanges at the air-water interface. In order to characterize atmospheric influence on aquatic compartment and calculate pollutant fluxes, two separate water systems were studied: a high altitude lake (Muzelle lake, Oisans) and an alpine river (Arc, Maurienne valley). Two POP families were targeted for their different physicochemical properties: PAHs and PCBs.In these mountain environments with limited access and energy, passive sampling strategy was chosen. Samplers were improved, developed in the lab or used to distinctly collect all POP forms in the air (gas, particulate, dry and wet depositions) and water (dissolved, particulate). A comparison of different atmospheric passive samplers was conducted to define the most reliable and representative. The air-water transfer studies were realized on the high altitude lake over two summer periods (2014 and 2015) and over a two years monitoring (2014 to 2016) in the alpine river. So, the atmospheric role on the alpine lake in summer was defined and air-water flux exchanges were calculated. As the alpine river is a more complex water system for the air-water transfers study and quantification, in a first time a space-time contamination monitoring was conducted along the river and a first approach was applied to calculate pollutant fluxes at the interface.

Page generated in 0.0648 seconds