Spelling suggestions: "subject:"altas dimensões"" "subject:"sltas dimensões""
1 |
Sistemas eletricamente carregados em relatividade geral : equilíbrio e colapsoVELA, José Domingo Arbañil January 2009 (has links)
Orientador: Vilson Tonin Zachin. / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Física, 2009.
|
2 |
Modos quase-normais de buracos negros plano-simétricos anti-de sitter em d dimensões / Quasinormal modes of plane-symetric anti-de sitter black holes in d dimensionsMorgan, Jaqueline 22 August 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Quasinormal modes of plane-symmetric anti-de Sitter (AdS) black holes in d spacetime dimensions are investigated. Following the gauge invariant prescription developed by Kodama, Ishibashi and Seto (2000), fundamental equations for gravitational perturbation in such a background are constructed. Within such a prescription, metric perturbations naturally split into three disjoint classes. Namely, tensor, vector and scalar perturbations. However, different gauge invariant quantities are chosen in the present work, because they are more suited to the particular boundary conditions usually imposed to find quasinormal modes in AdS spacetimes than those used by Kodama, Ishibashi and Seto. In particular, the quantities used here present also the so called hydrodynamic modes, i. e., shear modes for vector perturbations and sound wave modes for the scalar ones, what is not found using the former quantities. It is also shown that there is just one shear mode, which does not depend upon the number of spacetime dimensions (d). Moreover, it is also found a general expression for the sound wave modes in terms of the number of the parameter d for scalar perturbations, and that there is no such a hydrodynamic mode for the tensor sector. Horowitz-Hubeny power series method is used in numerical analysis to find the dispersion relations for the first few quasinormal modes, and also for the hydrodynamic modes. This analysis is performed for five and six spacetime dimensions in the case of tensor perturbations, and for four, five and six dimensions in the cases of vector and scalar perturbations. The dispersion relations of regular modes present the same general behavior for all kinds of perturbations, Re(w) → q and Im(w) → 0 in the limit q → ∞, where w and q are the normalized frequency and the normalized wave number, respectively. / Investiga-se os modos quase-normais gravitacionais de buracos negros plano-simétricos anti-de Sitter em d dimensões, cuja geometria das seções espaciais é plana e cuja topologia pode ser plana, cilíndrica ou toroidal. Deduz-se equações fundamentais de perturbação gravitacional para este background, seguindo o formalismo invariante de gauge desenvolvido por Kodama, Ishibashi e Seto (2000), segundo o qual as perturbações métricas são naturalmente separadas em três setores ortogonais: tensorial, vetorial e escalar. Entretanto, são escolhidas diferentes quantidades invariantes de gauge tais que sob condições de contorno apropriadas fornecem os modos quase-normais hidrodinâmicos do buraco negro em questão. Particularmente, no limite hidrodinâmico, os modos de cisalhamento nas perturbações gravitacionais vetoriais e modos de onda sonora nas perturbações escalares são encontrados explicitamente. Mostra-se que o modo de cisalhamento é único e independe do número de dimensões, apresenta-se uma expressão para o modo de onda sonora válida para qualquer dimensão e verifica-se que as perturbações gravitacionais tensoriais não apresentam modos hidrodinâmicos. Utiliza-se o método de Horowitz-Hubeny para calcular numericamente os primeiros modos quase-normais comuns para cada setor de perturbação e apresentam-se as respectivas relações de dispersão Re(w) × q e Im(w)×q, onde w são as freqüências quase-normais e q é o número de onda normalizados. Também obtêm-se numericamente os modos hidrodinâmicos e suas relações de dispersão. Os modos quase-normais das perturbações tensoriais são calculados para buracos negros plano-simétricos anti-de Sitter em cinco e seis dimensões, e os modos quase-normais das perturbações vetoriais e escalares são calculados para buracos negros em quatro, cinco e seis dimensões. Observa-se que as relações de dispersão apresentam um comportamento geral onde Re(w) → q e Im(w) → 0 conforme q → ∞ independentemente do tipo de perturbação, número de dimensões e do modo quase-normal analisado.
|
Page generated in 0.0587 seconds