Spelling suggestions: "subject:"alternating sig matrix"" "subject:"lternating sig matrix""
1 |
Quelques problèmes d’énumération autour des matrices à signes alternantsLe Gac, Florent 06 July 2011 (has links)
Nous considérons plusieurs problèmes autour des matrices à signes alternants (MSA). Dans un premier chapitre nous donnons une formule de comptage des MSAs selon le nombre k de -1 qu'elles contiennent et leur taille n. Cette formule permet d'obtenir une évaluation asymptotique pour un k donné lorsque n tend vers l'infini et une expression simple pour les valeurs de k inférieures ou égales à 7.Une deuxième partie est consacrée à une famille de MSAs dont les triangles Gogs (ou triangles monotones) associés sont en bijection avec une famille de triangles Magogs (ou des partition planes auto complémentaires symétriques). Nous présentons une méthode de minoration du nombre d'éléments de taille n dans cette famille d'objets.Enfin, nous évaluons la probabilité d'apparition de motifs (sous-diagrammes) dans des diagrammes de cordes tirés selon la distribution limite introduite par la conjecture de Razumov et Stroganov. / Abstract
|
2 |
Pattern Avoidance in Alternating Sign MatricesJohansson, Robert January 2006 (has links)
<p>This thesis is about a generalization of permutation theory. The concept of pattern avoidance in permutation matrices is investigated in a larger class of matrices - the alternating sign matrices. The main result is that the set of alternating sign matrices avoiding the pattern 132, is counted by the large Schröder numbers. An algebraic and a bijective proof is presented. Another class is shown to be counted by every second Fibonacci number. Further research in this new area of combinatorics is discussed.</p>
|
3 |
Pattern Avoidance in Alternating Sign MatricesJohansson, Robert January 2006 (has links)
This thesis is about a generalization of permutation theory. The concept of pattern avoidance in permutation matrices is investigated in a larger class of matrices - the alternating sign matrices. The main result is that the set of alternating sign matrices avoiding the pattern 132, is counted by the large Schröder numbers. An algebraic and a bijective proof is presented. Another class is shown to be counted by every second Fibonacci number. Further research in this new area of combinatorics is discussed.
|
Page generated in 0.1063 seconds