• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 47
  • 38
  • 24
  • 10
  • 8
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 342
  • 342
  • 74
  • 65
  • 57
  • 51
  • 49
  • 44
  • 39
  • 36
  • 33
  • 33
  • 32
  • 28
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Role of Stress-Induced Alternative Splicing of HDM2 in Human Tumor and Non-Tumorigenic Cell Lines

Dias, Chrisanne Silvia 22 December 2006 (has links)
No description available.
82

THE FUNCTIONAL SIGNIFICANCE OF AN ALTERNATELY SPLICED PRODUCT OF THE <i>HDM2</i>GENE

Schmerr, Martin J. 20 April 2007 (has links)
No description available.
83

Genomic Structure and Alternative Splicing of Type R2B Receptor Protein Tyrosine Phosphatases, and the Role of RPTPρ

Besco, Julie January 2002 (has links)
No description available.
84

Molecular Determinants of Alternative Splicing of MDM2 in Response to Stress: Implications in Pediatric Rhabdomyosarcoma

Singh, Ravi K. 28 September 2009 (has links)
No description available.
85

Regulation of Tumorigenic Spliced Isoforms in Cancer

Tapia-Santos, Aixa S. 31 March 2011 (has links)
No description available.
86

Identifying Splicing Regulatory Elements with de Bruijn Graphs

Badr, Eman 12 May 2015 (has links)
Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. This work tackles the limitations in the current approaches for identifying SREs. It addresses two major computational problems, identifying variable length SREs utilizing a graph-based model with de Bruijn graphs and discovering co-occurring sets of SREs (combinatorial SREs) utilizing graph mining techniques. In addition, I studied and analyzed the effect of alternative splicing on tissue specificity in human. First, I have used a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In my approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). Consequently, the predicted SREs are of different lengths. I identified 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. My model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation. Second, I developed CoSREM (Combinatorial SRE Miner), a graph mining algorithm for discovering combinatorial SREs. The goal is to identify sets of exonic splicing regulatory elements whether they are enhancers or silencers. Experimental evidence is incorporated through my graph-based model to increase the accuracy of the results. The identified SREs do not have a predefined length, and the algorithm is not limited to identifying only SRE pairs as are current approaches. I identified 37 SRE sets that include both enhancer and silencer elements in human genes. These results intersect with previous results, including some that are experimental. I also show that the SRE set GGGAGG and GAGGAC identified by CoSREM may play a role in exon skipping events in several tumor samples. Further, I report a genome-wide analysis to study alternative splicing on multiple human tissues, including brain, heart, liver, and muscle. I developed a pipeline to identify tissue-specific exons and hence tissue-specific SREs. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, I identified 28,100 tissue-specific exons across the four tissues. I identified 1929 exonic splicing enhancers with 99% overlap with previously published experimental and computational databases. A complicated enhancer regulatory network was revealed, where multiple enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the enhancers are found to be co-occurring with multiple silencers and vice versa, which demonstrates a complicated relationship between tissue-specific enhancers and silencers. / Ph. D.
87

BIOPHYSICAL CHARACTERIZATION OF ASF/SF2’S INTERACTION WITH SPLICE SITE A7 IN THE HIV GENOME

Kochert, Brent Andrew 07 December 2012 (has links)
No description available.
88

ISOLATION AND CHARACTERIZATION OF A SECOND PROTEIN L-ISOASPARTYL METHYLTRANSFERASE GENE IN ARABIDOPSIS THALIANA

Xu, Qilong 01 January 2004 (has links)
Conversion of aspartate and asparagine residues to isoaspartate is a prevalent covalent protein modification in cells. The accumulation of these altered residues can lead to the loss of protein function and the consequent loss of cellular function. The L-ISOASPARTATE METHYLTRANSFERASE (EC 2.1.1.77) (PIMT) iteratively methylates abnormal isoaspartyl residues leading to conversion to L-aspartate, thereby mitigating the injurious effects of aging. Arabidopsis thaliana is unique among eukaryotes studied to date in that it possesses two genes (At3g48330 (PIMT1) and At5g50240 (PIMT2)) encoding PIMT. The PIMT2 gene exhibits a complex transcriptional control involving different transcriptional initiation sites and 5'- and 3'- alternative splice site selection in the first intron. Varying the transcriptional initiation site results in alternative targeting of the PIMT2 proteins thus produced to: 1) the nucleus, or 2) the cytoplasm, while PIMT1 is cytosolic. Inclusion of a 51 nucleotide 5 alternatively spliced sequence with or without a nine nucleotide 3 alternatively spliced sequence dramatically alteres the subcellular protein localization from the cytoplasm and around the chloroplast to inside the chloroplast. All recombinant PIMT2 isoform tested exhibit PIMT activity, although solubility varied among them. Multiplex RT-PCR was used to establish PIMT1 and PIMT2 transcript presence and abundance, relative to -TUBULIN, in various tissues and under a variety of stresses imposed on seeds and seedlings. PIMT1 transcript is constitutively present but can increase, along with PIMT2, in developing seeds presumably in response to increasing endogenous ABA. Transcript from PIMT2 also increases in establishing seedlings due to exogenous ABA application or applied stress presumably through an ABA-dependent pathway. Furthermore, Cleaved Amplified Polymorphic Sequence analysis of the PIMT2 amplicons has shown that the ratio among the splicing variants alters upon ABA application, implicating a role for the spliceosome or differential RNA stability in orchestrating the plant's response to stress. T-DNA insertional mutants of both genes were isolated but no obvious phenotype has been identified. The double mutant has been generated and will be evaluated.
89

The Arabidopsis Calcineurin B-Like10 Calcium Sensor Couples Environmental Signals to Developmental Responses

Monihan, Shea January 2011 (has links)
Calcium is a component of signal transduction pathways that allow plants to respond to numerous endogenous and environmental signals during growth and development. Calcium-mediated signaling involves multiple components including: 1) channels, pumps, and exchangers that act in concert to generate a change in cytosolic calcium, 2) calcium-binding proteins that sense the calcium change, and 3) downstream target proteins that modify enzyme activity and gene expression needed for the subsequent response. One method for achieving specificity during calcium signaling is through regulation of the calcium-binding proteins that perceive changes in cytosolic calcium. These proteins can be regulated through differences in expression in response to stimuli, localization within the cell or plant, affinity for calcium, and interaction with downstream target proteins; all of which can result in specific cellular responses. My projects have focused on the Arabidopsis thaliana (Arabidopsis) CALCINEURIN B-LIKE10 (CBL10) calcium-binding protein, and specifically on understanding: 1) how post-transcriptional regulation of the CBL10 gene is used to modulate seedling growth in saline conditions (salinity), and 2) CBL10’s function in the flower during growth in salinity. In addition, 3) I have examined the roles of two putative CBL10-interacting proteins in plant growth and development. CBL10 is alternatively spliced into two transcripts; CBL10 encoding the characterized, full-length protein and CBL10 LONG A (CBL10LA) encoding a putative truncated protein due to a pre-mature termination codon within a retained intron. When seedlings are grown in the absence of salinity, both alternatively spliced transcripts are detected; however, in response to salinity, levels of the CBL10LA transcript are reduced. My data suggest a model in which the relative abundance of the two transcripts regulates the SALT-OVERLY-SENSITIVE (SOS) pathway involved in maintaining cellular sodium ion homeostasis. The presence of CBL10LA in the absence of salinity ensures that the SOS pathway is inactive. The removal of CBL10LA in response to saline conditions results in CBL10 activation of the SOS pathway to prevent sodium ions from accumulating to toxic levels in the cytosol. Successful fertilization during flowering requires the coordinated development of stamens and pistils. Stamens must elongate and anthers dehisce to release pollen onto the stigma while the pistil prepares to receive the pollen and promote growth and targeting of the female gametophyte. When the cbl10 mutant is grown in salinity, flowers are sterile due to decreased stamen elongation, reduced anther dehiscence, and abnormal pistil development. My studies demonstrated that the SOS pathway is not involved in maintaining flower development in salinity and indicate that CBL10 functions in different pathways to regulate vegetative and reproductive development during growth in saline conditions. An in silico search for Arabidopsis proteins that might interact with CBL10 resulted in the identification of two components of the Mediator complex involved in the regulation of transcription in eukaryotes. While additional studies I carried out suggest that interaction with CBL10 is unlikely, I have shown that these proteins are important for plant growth in high levels of chloride and in maintenance of growth in short-day conditions.
90

Molecular Mechanisms of Frontotemporal Lobar Degeneration

Skoglund, Lena January 2009 (has links)
The aim of this thesis was to identify genetic factors involved in frontotemporal lobar degeneration (FTLD), a neurodegenerative disorder clinically characterised by a progressive change in personality, behaviour and language. FTLD is a genetically complex disorder and a positive family history is found in up to 40% of the cases. In 10-20% of the familial cases the disease can be explained by mutations in the gene encoding the microtubule associated protein tau (MAPT). In the first study we describe the clinical and neuropathological features of a Finnish family with FTLD caused by a mutation in MAPT. We also provide evidence that the pathogenic mechanism of this mutation is through altered splicing of MAPT transcripts. Recently, mutations in the gene encoding progranulin (PGRN) were identified as a major cause of FTLD. In the second study we describe a Swedish family with FTLD caused by a frameshift mutation in PGRN. We provide a clinical and neuropathological description of the family, as well as evidence that the pathogenicity of this mutation is through nonsense-mediated decay of the mutant mRNA transcripts and PGRN haploinsufficiency. In the third study we describe a novel PGRN splice site mutation and a previously described PGRN frameshift mutation, found in a mutation screen of 51 FTLD patients. We describe the clinical and neuropathological characteristics of the mutation carriers and demonstrate that haploinsufficiency is the pathogenic mechanism of the two mutations. In the fourth study we investigate the prevalence of PGRN and MAPT gene dosage alterations in 39 patients with FTLD. No gene dosage alterations were identified, indicating that variations in copy number of the PGRN and MAPT genes are not a common cause of disease, at least not in this FTLD patient collection.

Page generated in 0.0726 seconds