• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication Of Aluminum Matrix Particulate Composites By Compaction And Sintering

Li, Wei 13 December 2008 (has links)
With the possession of extremely broad unique properties, particulate reinforced aluminum composites are very attractive in diverse applications. Aluminum matrix particulate composites are challenging to work with. A single pressing and sintering process was used to fabricate the reinforced aluminum composites in this study. The key advantage of this method is its comparative low expense. However, abrasive reinforcement powders can lead to shorter tool life. To study the fundamental wear mechanisms during the die compaction process, a new method was developed and combined with experiments to quantify tool wear. Automatic die compaction experiments and tribological experiments are employed in this study. The tribologcial experiments consist of a modified pin-onlat test and a modified loop test. Mass loss of tools was recorded during all the experiments. A new tool wear model was used in this study to investigate effect of different hard phase and different lubricant level on die compaction process.
2

Mechanics of Hybrid Metal Matrix Composites

Dibelka, Jessica Anne 27 April 2013 (has links)
The appeal of hybrid composites is the ability to create materials with properties which normally do not coexist such as high specific strength, stiffness, and toughness. One possible application for hybrid composites is as backplate materials in layered armor. Fiber reinforced composites have been used as backplate materials due to their potential to absorb more energy than monolithic materials at similar to lower weights through microfragmentation of the fiber, matrix, and fiber-matrix interface. Composite backplates are traditionally constructed from graphite or glass fiber reinforced epoxy composites. However, continuous alumina fiber-reinforced aluminum metal matrix composites (MMCs) have superior specific transverse and specific shear properties than epoxy composites. Unlike the epoxy composites, MMCs have the ability to absorb additional energy through plastic deformation of the metal matrix. Although, these enhanced properties may make continuous alumina reinforced MMCs advantageous for use as backplate materials, they still exhibit a low failure strain and therefore have low toughness. One possible solution to improve their energy absorption capabilities while maintaining the high specific stiffness and strength properties of continuous reinforced MMCs is through hybridization. To increase the strain to failure and energy absorption capability of a continuous alumina reinforced Nextel" MMC, it is laminated with a high failure strain Saffil® discontinuous alumina fiber layer. Uniaxial tensile testing of hybrid composites with varying Nextel" to Saffil® reinforcement ratios resulted in composites with non-catastrophic tensile failures and an increased strain to failure than the single reinforcement Nextel" MMC. The tensile behavior of six hybrid continuous and discontinuous alumina fiber reinforced MMCs are reported, as well as a description of the mechanics behind their unique behavior. Additionally, a study on the effects of fiber damage induced during processing is performed to obtain accurate as-processed fiber properties and improve single reinforced laminate strength predictions. A stochastic damage evolution model is used to predict failure of the continuous Nextel" fabric composite which is then applied to a finite element model to predict the progressive failure of two of the hybrid laminates. / Ph. D.
3

Ultra-fine grain two-phase aluminum alloys produced by friction stir processing

Hsu, Chih-jing 22 January 2007 (has links)
Friction stir processing (FSP) is applied to produce particulate-reinforced aluminum matrix composites with ultrafine grained structure from elemental powder mixtures of Al-Cu, Al-Ti and Al-Si. The microstructures of the composites were characterized by the use of XRD, SEM and TEM. Microhardness, tensile and compressive tests were performed to evaluate the mechanical properties of these composites. The mechanisms of microstructure evolution in FSP and the strengthening mechanisms in these composites are discussed. In the Al-Si system, the Si particles were broken and uniformly distributed in the stir zone by the application of multiples-pass FSP. The average size of Si particles and Al grains were refined to below ~2
4

Characterization of high energy beam welding of 6061/SiC aluminum matrix composites

Huang, Ru-Ying 14 July 2000 (has links)
The current thesis was designed to examine the welding characteristics of laser and electron beam welding of the superplastic metal matrix composites (MMCs) reinforced with 1~20% SiC and to differentiate the difference between the 6061 aluminum alloy and 6061/SiC composites. The 6061/20%SiCw MMC was found to exhibit poor welding characteristics under electron beam welding. This was because that the SiC whiskers would induce poor fluidity of molten Al matrix and the electron beam continuously bombared the MMC resulting in material loss through sputtering, and this effect induced an "V" groove formed at the center of the fusion zone. The laser beam welding of the 20% SiCw MMCs caused the decomposition of the SiCw into Al4C3 platelets at the center region of the fusion zone, as well as cavities along the outer region due to thermal expansion differences. The post-weld tensile test results showed that the brittle weld zone lead to the degradation of strength, and the 6061/20%SiCw MMC after welding would lose superplastic properties. There were some differences between the 6061 alloy and MMC upon subjected to laser beam welding. The absorption of laser energy by the MMC was better than that by the alloy; the absorption of laser energy increased with increasing SiC content. The shape of the reinforced material could also influence the quantity of Al4C3 formed. The total surface area of SiC particles was smaller than that of the SiC whiskers under equal volume fraction, therefore more SiC whiskers were decomposed. In the wetting experiment, the wettability and fluidity of molten material was observed to decrease with increasing SiC volume fraction at the same temperature. The wettability could be improved at higher temperatures. For the 20%SiCw MMC, the wettability and fluidity could not be sufficiently improved even at a high temperature of 1300¢J, which appeared to be the cause for the lack of feeding in the central fusion zone.
5

LASER POWDER BED FUSION OF ALUMINUM AND ALUMINUM MATRIX COMPOSITES

Ghasemi, Ali January 2023 (has links)
Laser powder bed fusion (LPBF), one of the most promising additive manufacturing (AM) techniques, has enabled the production of previously impossible structures. This breakthrough in AM has not only facilitated the creation of new designs, but also the redesign of existing industrial and engineering components to produce lightweight and highly efficient dies and molds, biomaterial scaffolds, aircraft brackets, heat sink and heat exchangers. In many of the mentioned applications in industries such as automotive, aerospace, heat exchanger, and electronics, aluminum (Al), Al alloys, and Al matrix composites (AMCs) are considered potential candidates. In the first phase of this study, the optimum powder particle size and size distribution of an Al alloy powder (i.e., AlSi10Mg) was determined with the aim being to achieve highest densification levels and dimensional accuracies. In the second phase, three materials with high thermal conductivities were selected, namely, pure Al, AlSi12 and AlSi10Mg alloys. Since Al/Al alloys are prone to oxidation, the LPBF process parameters were optimized not only in terms of the densification level but also oxygen content of the fabricated parts. It was found out that the rate of oxide diminishment for Al/Al alloys during the LPBF process is more than in-situ oxidation. Despite the efforts, the optimized LPBF fabricated samples showed lower thermal conductivity than their conventionally manufactured counterparts. To tackle the issue, two different potential solutions were put into test. In the third phase, the influence of preheating on thermal properties of pure Al, AlSi12, and AlSi10Mg was investigated and a huge improvement in the thermal conductivity of the optimized as-built parts was obtained. In the fourth phase, the possibility of enhancing thermal conductivity of the LPBF fabricated Al/Al alloys in as-built condition through the incorporation of a second constituent with a higher thermal conductivity (i.e., graphene) was investigated. / Thesis / Doctor of Philosophy (PhD)
6

Estudo do processo de fabricação de compósitos AA6061 + TiCN por sinterização com fase líquida e caracterização do produto / Investigation on the process of production of composites AA6061 + TiCN by powder metallurgy involving liquid phase sintering and characterization of the product

Bravo Salazar, Jaime Alejandro 19 August 2018 (has links)
Orientadores: Maria Helena Robert, Elisa Maria Ruiz Navas / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-19T00:27:43Z (GMT). No. of bitstreams: 1 BravoSalazar_JaimeAlejandro_D.pdf: 9695376 bytes, checksum: d35ebfbcaf1dac8c6665392b7d784d23 (MD5) Previous issue date: 2007 / Resumo: Este trabalho estuda o processo de fabricação de compósitos de matriz de alumínio AA6061 reforçado com TiCN por metalurgia do pó, envolvendo as etapas de mistura de pós, compactação uniaxial e sinterização com fase líquida. Para efeitos de comparação foram produzidos e caracterizados compactados da liga AA6061 sem adição de reforços. Foram investigados os parâmetros de processo: teores de reforço (5% e 10% massa), teor de aditivos Pb e Sn (0,1, 0,15, 0,2 e 0,4% massa), pressão de compactação (400, 600 e 800 MPa), tempos (15, 30, 45 e 60 min) e temperatura de sinterização (590, 600, 610 e 620 ºC). Em cada etapa do processo foram caracterizados os produtos (mistura de pós e compactados); o produto final obtido, após sinterização, foi caracterizado com relação à sua microestrutura, propriedades físicas (densificação e variação dimensional) e mecânicas (resistência à flexão e dureza). Os resultados obtidos mostraram uma grande eficiência do processo na obtenção de compósitos; a adição do teor de reforço de 5%TiCN foi eficiente na promoção de rupturas das camadas de óxidos do pó da liga de alumínio compactado à pressão de 400 MPa, auxiliando a sinterização por difusão da fase líquida formada a partir da fusão de Al+Mg2Si, melhorando a densificação e diminuindo a variação dimensional dos produtos sinterizados. Do ponto de vista metalúrgico, os materiais compósitos obtidos apresentaram microestruturas homogêneas, com uma boa distribuição dos reforços na matriz e relativa diminuição de poros. A adição de Pb e Sn promovem maior eficiência de ativação de mecanismos de sinterização; para compactados produzidos à pressão de 800 MPa, a adição de 0,1% desses elementos já apresentou significativa influência na sinterização. Com relação às propriedades mecânicas e físicas observou-se que a adição de TiCN aumentou quase no dobro de seus valores obtidos quando são comparados com a liga AA6061 / Abstract: This work investigates the process of production of composites of the alloy AA6061 reinforced with TiCN particles, by powder metallurgy involving the steps: conventional mixture of powders, compaction by uniaxial cold pressing and sintering with formation of a liquid phase. For comparative analysis it was also produced sintered AA6061 without addition of reinforcements. The following processing parameters were studied: reinforcing particles content (5 and 10 wt%); content of trace elements Pb and Sn (0.1, 0.15, 0.2 0.4 wt%); compaction pressure (from 400, 600 and 800 MPa); time and temperature of sintering (15, 30, 45, 60 min and 590, 600, 610, 620 oC). In each step products were characterized (powder mixture and green compacts); the final sintered product was characterized related to microstructure, physical (densification and dimensional changes) and mechanical (hardness and bending strength) properties. Obtained results showed high efficiency of the applied process to produce reliable composite products; the addition of 5 wt% TiCN was efficient to promote fracture of the oxide layer in the aluminum particles surface during pressing. At sintering temperatures liquid phase is formed by Al+Mg2Si melting and is distributed among particles through the fractures of the oxide layer, improving the material densification and its mechanical properties. Microstructures obtained showed homogeneous distribution of TiCN and reduced porosity, whereas AA6061 alloy microstructure showed higher porosity. Addition of Pb and Sn promoted higher efficiency of sintering mechanisms in compacts submitted to high pressures, leading to enhanced physical and mechanical properties in those materials. / Doutorado / Materiais e Processos de Fabricação / Doutor em Engenharia Mecânica
7

Synthesis And Phase Transformation Behaviour Of Nanoscaled Alloys Embedded In Aluminium

Bhattacharya, Victoria 12 1900 (has links) (PDF)
No description available.
8

Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix composites

Ali, Fahad 11 April 2012 (has links) (PDF)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating. The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds. The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice. Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat. During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K. The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment. The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent. In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation. The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites. Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete. These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
9

Study Of The Properties And Particle/Matrix Interface In Al-12 Si-10% SiCp Composite

Sundararajan, S 08 1900 (has links) (PDF)
No description available.
10

Phase Transformation Behavior Of Embedded Bimetallic Nanoscaled Alloy Particles In Immiscible Matrices

Basha, D Althaf 07 1900 (has links) (PDF)
The aim of the present thesis is to understand the phase transformation behavior of embedded alloy nanoparticles embedded in immiscible matrices. Embedded alloy inclusions have been dispersed in immiscible matrix via rapid solidification method. The present work deals with synthesis of embedded particles, evolution of microstructure, morphology and crystallographic orientation relation relationships among different phases, phase transformation and phase stability behavior of embedded alloy inclusions in different matrices. In the present investigation the systems chosen are Bi-Sn and Bi-Pb in Zn matrix and Cd-Sn in Al matrix. Chapter 1 gives the brief introduction of present work Chapter 2 gives a brief review of nanoscale materials, various synthesis techniques, microstructure evolution, solidification and melting theories. Chapter 3 discusses the processing and experimental techniques used for characterization of the different samples in the present work. Melt-spinning technique used to synthesize the rapidly solidified ribbons. The structural characterization is carried out using X-ray diffraction and transmission electron microscopy. Chapter 4 illustrates the size dependent solubility and phase transformation behavior of Sn-Cd alloy nanoparticles embedded in aluminum matrix. X-ray diffraction study shows the presence of fcc Al, bct Sn, hcp Cd solid solution and hcp Cd phases. Based on Zen’s law, the amount of Sn present Cd solid solution is estimated. Using overlapped sterograms, the orientational relationships among various phases are found. Microscopy studies reveal that majority of the alloy nano inclusions exhibit a cuboctahedral shape with 111 and 100 facets and they are bicrystalline. STEM-EDS analysis shows that both phases exhibit size dependent solubility behavior and for particles size smaller than 18 nm, single phase solid solution could only be observed. Calorimetric studies reveal a depression in eutectic melting point of bimetallic particles. In situ heating studies show that melting initiates at triple line junction corner and melt first grows into the interior of the Sn rich phase of the particle and then later the melt grows into the interior of the Cd phase of the particle. During cooling first Cd phase solidifies later Sn phase solidifies and on further cooling at low temperatures entire particle transforming into complete solid solution phase particle. Size dependent melting studies show that during heating smaller particles melted first, later bigger particles melted. During cooling first bigger particle solidified later smaller particles solidified. High resolution imaging indicates presence of steps across particle-matrix interface that may get annihilated during heating. During cooling, molten particles in the size range of 16-30 nm solidify as solid solution which for molten particles greater than 30 nm solidify as biphasic particle. Insitu heating studies indicates that for solid particles less than 15 nm get dissolved in the Al matrix at temperatures at around 135°C. Differential scanning calorimetry (DSC) studies show in the first heating cycle most of the particles melt with an onset of melting of at 166.8°C which is close to the bulk eutectic temperature of Sn-Cd alooy. The heating cycle reveals that the melting event is not sharp which can be understood from in-situ microscopy heating studies. In the second and the third cycles, the onset of melting observed at still lower temperatures 164.3°C and 158.5°C .The decrease in onset melting point in subsequent heating cycles is attributed to solid solution formation of all small particles whose size range below 30 nm during cooling. cooling cycles exhibit an undercooling of 90°C with respect to Cd liquidus temperature. Thermal cycling experiments using DSC were carried out by arresting the run at certain pre-determined temperatures during cooling and reheating the sample to observe the change in the melting peak position and area under the peak. The areas of these endothermic peaks give us an estimate of the fraction of the particles solidified upto the temperature when the cycling is reversed. Based on experimental observations, a thermodynamic model is developed, to understand the solubility behavior and to describe the eutectic melting transition of a binary Sn-Cd alloy particle embedded in Al matrix. Chapter 5 discusses the phase stability and phase transformation behavior of nanoscaled Bi-Sn alloys in Zn matrix. Bi-Sn alloys with eutectic composition embedded in Zn matrix using melt spinning technique. X-ray diffraction study shows the presence of rhombohedral Bi, pure BCT Sn and hcp Zn phases. In X-ray diffractogram, there are also other new peaks observed, whose peak positions (interplanar spacings) do not coincide either with rhombohedral Bi or bct Sn or hcp Zn. Assuming these new phase peaks belong to bct Sn rich solid solution(based on earlier work on Bi-Sn rapidly solidified metastable alloys) whole pattern fitting done on x-ray diffractogram using Lebail method. The new phase peaks indicated as bct M1(metastable phase1), bct M2(metastable phase2) phases. The amount of Bi present in M1, M2 solid solution is estimated using Zens law. Two sets of inclusions were found, one contains equilibrium bismuth and tin phases and the other set contains equilibrium bismuth and a metastable phase. In-situ TEM experiments suggest that as temperature increases bismuth diffuses into tin and becomes complete solid solution. Melting intiates along the matrix–particle interface leading to a core shell microstructure. During cooling the entire inclusion solidify as solid solution and decomposes at lower temperatures. High temperature XRD studies show that as temperature increases M1, M2 phases peaks merge with Sn phase peaks and Bi phase peak intensities slowly disappear and on further increasing temperature Sn solid solution phase peaks also disappear. During cooling diffraction studies show that first Sn solid solution phase peaks appear and later Bi phase peaks appear. But, the peaks belong to metstable phases not appeared while cooling. Chapter 6 presents morphology and phase transformation of nanoscaled bismuth-lead alloys with eutectic (Pb44.5-Bi55.5) and peritectic (Pb70-Bi30) compositions embedded in zinc matrix. using melt spinning technique. In alloy1[ Zn-2at%(Pb44.5-Bi55.5)] inclusions were found to be phase separated into two parts one is rhombohedral Bi and the other is hcp Pb7Bi3 phase. X-ray diffraction study shows the presence of rhombohedral Bi, hcp Pb7Bi3 and hcp Zn phases in Zn-2at%(Pb44.5-Bi55.5) melt spun sample. The morphology and orientation relationships among various phases have been found. In-situ microscpy heating studies show that melt initially spreads along the matrix–particle interface leading to a core-shell microstructure. And in the core of the core-sell particles, first Bi phase melts later Pb7Bi3 phase will melt and during cooling the whole particle solidify as biphase particle with large undercooling. In-situ heating studies carried out to study the size dependent melting and solidification behavior of biphase particles. During heating smaller particles melt melt first later bigger particle will melt. In contrast, while cooling smaller particles solidifies first, later bigger particles will solidify. Detailed high temperature x-ray diffraction studies indicate there increases first Bi phase peaks disappear later Pb7Bi3 phase peaks disappear and during cooling first Pb7Bi3 phase peaks appear and later Bi phase peaks appear. In alloy2[ Zn-2at%(Pb70-Bi30)] inclusions were found to be single phase particles. X-ray diffraction study shows the presence of hcp Pb7Bi3 and hcp Zn phases in Zn-2at%(Pb70-Bi30) melt spun sample. The crystallographic orientation relationship between hcp Pb7Bi3 and hcp Zn phases. In-situ microscpy heating studies show that melting initiates across the matrix–particle interface grows gradually into the interior of the particle. Three phase equilibrium at peritectic reaction temperature is not observed during insitu heating TEM studies. Size dependent melting point depression of single phase particles is not observed from in-situ heating studies. Detailed high temperature x-ray diffraction studies show that while heating the Pb7Bi3 phase peak intensities start decreasing after 170°C and become zero at 234°C. And during cooling Pb7Bi3 phase peaks starts appearing at 200°C and on further cooling the Pb7Bi3 phase peak intensities increase upto 150°C, below this temperature peak intensities remain constant.

Page generated in 0.0558 seconds