• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Agronomic and physiological aspects of competition for light between corn hybrids differing in canopy architecture and weeds

Begna, Sultan Hussein. January 1999 (has links)
No description available.
2

Agronomic and physiological aspects of competition for light between corn hybrids differing in canopy architecture and weeds

Begna, Sultan Hussein. January 1999 (has links)
The problems associated with short growing seasons has led to the development of leafy-reduced stature (LRS) corn hybrids. These hybrids have more leaf area above the ear, more rapid leaf area development, shorter stature, earlier maturity, and better responses to high plant populations and narrow spacings than conventional hybrids. Plants grown in a reduced light environment are limited in carbon assimilation and this, in turn, results in reductions in growth and development. A way to supplement the availability of photosynthate is injection of sucrose into plant stems. The objective of this thesis was to determine the ability of LRS corn plants to compete with weeds, and the reactions of weed species to the shade, including the relationships between weed growth (increase in biomass) and development (shape) under shaded conditions. Three years of field experiments (LRS and more conventional corn hybrids with both transplanted and naturally growing weeds) and two years of greenhouse work [weeds alone, C3 (lamb's quarters and velvetleaf) and C4 (redroot pigweed) in full sun or deep (75%) shade injected with 15% sucrose or not] were conducted. Yield reductions due to weed pressure were lower for LRS than other hybrids. Biomass production by both transplanted and naturally occurring weeds was up to 85% less under corn canopies than when grown without competition from corn. The biomass of C4 weeds was more reduced by competition with corn plants than that of C3 weeds. In spite of quick and early leaf development, leaves and other plant parts of LRS were not damaged excessively by mechanical (rotary hoeing) weed control. Both C3 and C4 weed plants produced more dry matter when injected with sucrose. Dry weights of sucrose injected shaded plants were not different from full sun uninjected plants. However, sucrose injection did not alter shading effects on development (distribution of biomass). Dry matter production and photosynthetic rates of C4 weeds were more reduced
3

Evaluation of Macrophoma sp. as a potential mycoherbicide for the control of Amaranthus retroflexus L. (redroot pigweed)

Chin, Alice January 1995 (has links)
Amaranthus retroflexus L. (redroot pigweed) is a major weed of many crops in North America including corn, soybean, and potato. It can be readily controlled by chemical and cultural methods. However, some populations of A. retroflexus have developed resistance against the application of triazine herbicides. Biololical control could be an alternative method to control this weed species. In 1990, a Macrophoma sp. causing foliar lesions was isolated from redroot pigweed and the potential of this plant pathogenic fungus as a mycoherbicide was evaluated. Large numbers of infective propagules were produced in solid substrate fermentation with chickpeas. When inoculated with 10$ sp8$ or 10$ sp9$ conidia m$ sp{-2}$, plants at the cotyledon to 2-leaf stage showed the most severe damage. Disease developed over a wide range of dew period durations (6 hr to 24 hr) and temperature regimes (14 C to 26 C), and the most rapid and destructive disease development occurred following a 24-hr dew period at 18 C. In controlled environment studies, this Macrophoma sp. was pathogenic to the genus Amaranthus and the closely related genus Celosia.
4

Evaluation of Macrophoma sp. as a potential mycoherbicide for the control of Amaranthus retroflexus L. (redroot pigweed)

Chin, Alice January 1995 (has links)
No description available.
5

Amaranthus retroflexus seed dormancy and germination responses to environmental factors and chemical stimulants

Omami, Elizabeth Nabwile, University of Western Sydney, Hawkesbury, Faculty of Agriculture, Horticulture and Social Ecology, School of Horticulture January 1993 (has links)
A large number of weed seeds in the soil persist because of seed dormancy, and depletion of the seed bank through manipulation of seed dormancy has been suggested as one of the goals in weed control. This study was designed to investigate some of the factors which control dormancy and germination in Amaranthus retroflexus seeds. Germination studies were conducted at different temperatures, and either in continuous white light or in the dark. Higher temperatures increased germination and, although light interacted with temperature, its effect on germination varied with the temperature. In an attempt to determine changes in dormancy during dry storage, two lots of seeds were stored dry at different temperatures. Loss in dormancy increased with an increase in storage temperature and duration, but the time required for maximum germination varied according to the seedlot. Seeds germinated to higher percentages at high temperatures, but storage at higher temperatures and for prolonged duration resulted in seeds gaining the ability to germinate at lower temperatures. Changes in dormancy under field conditions were also examined. Seeds were buried at different depths and for different durations and they all lost viability with time, but this loss was greater in surface-sown and shallowly buried seeds. Dormancy was broken during cold periods and induced as warmer periods progressed. The effects of chemical stimulants on dormancy and germination were investigated. The response of seeds to ethephon and nitrate were assessed at different temperatures either at continuous white light or in the dark. Germination increased with the concentration of the chemicals, and a greater response was observed at lower temperatures. The response to light varied depending on temperature / Master of Science (Hons)

Page generated in 0.0713 seconds