Spelling suggestions: "subject:"americium"" "subject:"américium""
1 |
Crystal structure and physical properties of americium metalMcWhan, Denis Bayman. January 1961 (has links)
Thesis--University of California, Berkeley, 1961. / "TID-4500 (16th Ed.)" -t.p. Includes bibliographical references (p. 99-103).
|
2 |
Some nuclear and electronic ground-state properties of Pa²³³, Am²⁴¹, and 16-hr Am²⁴²Winocur, Joseph. January 1960 (has links)
Thesis (Ph. D. in Physics)--University of California, Berkeley, Sept. 1960. / TID-4500 (15th ed.). Includes bibliographical references (leaves 126-128).
|
3 |
An analysis of the absorption spectra of TmIV and AmIVGruber, John Balsbaugh. January 1961 (has links)
Thesis (Ph. D. in Chemistry)--University of California, Berkeley, June 1961. / "UCRL-9203." Includes bibliographical references (leaves 151-153).
|
4 |
Levels in Np and Pu studies by coincidence spectrometry of gamma transitions following Am decayPate, Jerry Clark 08 1900 (has links)
No description available.
|
5 |
Fission and spallation competition from the intermediate nuclei americium-241 and neptunium-235Gibson, Walter Maxwell. January 1956 (has links)
Thesis--University of California, Berkeley, November 1956. / "Contract no. W-7405-eng-48." Bibliography: leaves 114-121.
|
6 |
On the nature of the americium-oxygen system dissociation pressures, related thermodynamic functions, and phase equilibria.Chikalla, Thomas D. January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1966. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
|
7 |
Angular correlation and coincidence studies of alpha-gamma cascades from protactinium²³¹, curium²⁴², and americium²⁴¹ /Moore, Richard Lee January 1953 (has links)
No description available.
|
8 |
Einfluss von Biofilmen auf das Migrationsverhalten von Uran, Americium und europium in der UmweltBaumann, Nils, Zirnstein, Isabel, Arnold, Thuro 09 September 2015 (has links) (PDF)
Die Mechanismen von Immobilisierungsprozessen radioaktiver Schwermetall-Ionen innerhalb von Biofilmen sind noch weitgehend unerforscht. Das liegt an der Komplexität der Biofilme, welche häufig diskrete geochemische Mikromilieus bilden, die sich vom umgebenden Milieu („Bulk Solution“) in Bezug auf dessen Biozönose (der mikrobiellen Diversität), den darin herrschenden geochemischen Bedingung (z.B. Red/Ox-Potential u./o. gelöster Sauerstoffmenge), aber auch in der Konzentration möglicher Komplexbildner (z.B. Metaboliten u./o. EPS-Komponenten) deutlich unterscheiden. Alle diese Faktoren können die Speziation der Radionuklide verändern und damit auch deren Transportverhalten. Für ein besseres Prozessverständnis zu den Wechselwirkungen von Radionukliden mit natürlichen, in Uran-kontaminierten Milieus lebende Mikroorganismen und den damit verbunden Stoffen wurde die Biozönose in Biofilmen und im Grubenwasser des ehem. WISMUT-Uranbergwerkes Königstein nach klassischen mikrobiologischen- und molekularbiologischen Methoden bestimmt. Aus einem Vergleich der Chemie im Biofilm mit der Chemie der umgebenden Lösung wird der Einfluss der Biofilme auf das Migrationsverhalten von Radionukliden in der Natur beurteilt. Die Identifizierung und Quantifizierung von Prokaryoten erfolgte u.a. mit der CARD FISH Methode. Die selektive Visualisierung der EPS-Komponenten in der Matrix der Biofilme wurde mit Hilfe der Konfokalen Laser Scanning Mikroskopie (CLSM) bewerkstelligt.
Zur Untersuchung der Speziation von fluoreszierenden Schwermetall-Ionen wie U(VI) kam die zeitaufgelöste, laser-induzierte Fluoreszenzspektroskopie (TRLFS) zum Einsatz. Um diese Methode auch im mikroskopischen Bereich anwenden zu können, wurde sie weiter zum CLSM hin entwickelt: Da ein 80-MHz-MaiTai-Laser zur Verfügung stand, wurde durch im kHz-Bereich alternierendes Beugen des Anregungslaserstrahls von der Probe weg (und wieder zu ihr hin) mittels akusto-optischem Modulator (AOM) eine quasi-gepulste Laseranregung im kHz-Bereich erreicht. Durch Einbindung von Frequenzvervielfachern („Harmonixx“ von APE Berlin und „Inspire“ von Spectra-Physics) konnte so eine gepulste Anregung innerhalb eines breiten Wellenlängenbereiches (ca. 230-1090 nm) ermöglicht werden. Für die Auswertung des als äußerst schwach zu erwartenden Fluoreszenzsignales (entsprechend des mikroskopisch kleinen Anregungsraumes) wurde die Time-Correlated Single-Photon Counting Methode (TCSPC) – auch „zeitbezügliche Einzelphotonenzählungs-Methode“ – an das Laser-Anregungssystem angepasst. Die Fluoreszenzlebenszeitkurve des Fluoreszenzsignals von U(VI) Species, die sich an der Oberfläche von den Protozoen Euglena Mutabilis befanden, konnte z.B. auf diese Art mit Hilfe der TCSPC ermittelt werden.
|
9 |
The Americium/lanthanide separation conundrum selective oxidation or soft donor complexants? /Shehee, Thomas Charles. January 2010 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, May 2010. / Title from PDF title page (viewed on June 9, 2010). "Department of Chemistry." Includes bibliographical references.
|
10 |
Einfluss von Biofilmen auf das Migrationsverhalten von Uran, Americium und europium in der UmweltBaumann, Nils, Zirnstein, Isabel, Arnold, Thuro January 2015 (has links)
Die Mechanismen von Immobilisierungsprozessen radioaktiver Schwermetall-Ionen innerhalb von Biofilmen sind noch weitgehend unerforscht. Das liegt an der Komplexität der Biofilme, welche häufig diskrete geochemische Mikromilieus bilden, die sich vom umgebenden Milieu („Bulk Solution“) in Bezug auf dessen Biozönose (der mikrobiellen Diversität), den darin herrschenden geochemischen Bedingung (z.B. Red/Ox-Potential u./o. gelöster Sauerstoffmenge), aber auch in der Konzentration möglicher Komplexbildner (z.B. Metaboliten u./o. EPS-Komponenten) deutlich unterscheiden. Alle diese Faktoren können die Speziation der Radionuklide verändern und damit auch deren Transportverhalten. Für ein besseres Prozessverständnis zu den Wechselwirkungen von Radionukliden mit natürlichen, in Uran-kontaminierten Milieus lebende Mikroorganismen und den damit verbunden Stoffen wurde die Biozönose in Biofilmen und im Grubenwasser des ehem. WISMUT-Uranbergwerkes Königstein nach klassischen mikrobiologischen- und molekularbiologischen Methoden bestimmt. Aus einem Vergleich der Chemie im Biofilm mit der Chemie der umgebenden Lösung wird der Einfluss der Biofilme auf das Migrationsverhalten von Radionukliden in der Natur beurteilt. Die Identifizierung und Quantifizierung von Prokaryoten erfolgte u.a. mit der CARD FISH Methode. Die selektive Visualisierung der EPS-Komponenten in der Matrix der Biofilme wurde mit Hilfe der Konfokalen Laser Scanning Mikroskopie (CLSM) bewerkstelligt.
Zur Untersuchung der Speziation von fluoreszierenden Schwermetall-Ionen wie U(VI) kam die zeitaufgelöste, laser-induzierte Fluoreszenzspektroskopie (TRLFS) zum Einsatz. Um diese Methode auch im mikroskopischen Bereich anwenden zu können, wurde sie weiter zum CLSM hin entwickelt: Da ein 80-MHz-MaiTai-Laser zur Verfügung stand, wurde durch im kHz-Bereich alternierendes Beugen des Anregungslaserstrahls von der Probe weg (und wieder zu ihr hin) mittels akusto-optischem Modulator (AOM) eine quasi-gepulste Laseranregung im kHz-Bereich erreicht. Durch Einbindung von Frequenzvervielfachern („Harmonixx“ von APE Berlin und „Inspire“ von Spectra-Physics) konnte so eine gepulste Anregung innerhalb eines breiten Wellenlängenbereiches (ca. 230-1090 nm) ermöglicht werden. Für die Auswertung des als äußerst schwach zu erwartenden Fluoreszenzsignales (entsprechend des mikroskopisch kleinen Anregungsraumes) wurde die Time-Correlated Single-Photon Counting Methode (TCSPC) – auch „zeitbezügliche Einzelphotonenzählungs-Methode“ – an das Laser-Anregungssystem angepasst. Die Fluoreszenzlebenszeitkurve des Fluoreszenzsignals von U(VI) Species, die sich an der Oberfläche von den Protozoen Euglena Mutabilis befanden, konnte z.B. auf diese Art mit Hilfe der TCSPC ermittelt werden.
|
Page generated in 0.0301 seconds