• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amido Phosphine Complexes of Zinc, Nickel, and Aluminum: Synthesis, Structure, and Reactivity

Lee, Wei-yin 22 July 2004 (has links)
none
2

Amido Phosphine Complexes of Zirconium, Hafnium, Nickel, and Palladium : Synthesis, Structure, and Reactivity

Chien, Pin-Shu 06 September 2005 (has links)
A series of bi- and tri-dentate amido phosphine ligands H[Ph-PNP] (bis(2-diphenylphosphinophenyl)amine), H[iPr-PNP] (bis(2-diisopropylphosphino- phenyl)amine), H[Cy-PNP] (bis(2-dicyclohexylphosphinophenyl)amine), H[iPr-NP] (N-(2-diphenylphosphinophenyl)-2,6-diisopropylaniline), and H[Me-NP] (N-(2-diphenylphosphinophenyl)-2,6-dimethylaniline) have been synthesized in high yield. Lithiation of these compounds with n-BuLi in ethereal solutions afforded the corresponding lithium complexes. The metathetical reactions of MCl4(THF)2 (M = Zr, Hf) with [iPr-NP]Li(THF)2 or [Me-NP]Li(THF)2 in toluene produced the corresponding [iPr-NP]MCl3(THF) and [Me-NP]2MCl2, respectively, in high yield. In contrast, attempts to prepare [Me-NP]MCl3(THF) and [iPr-NP]2MCl2 led to the concomitant formation of mono- and bis-ligated complexes, from which purification proved rather ineffective. The solution and solid-state structures of [iPr-NP]MCl3(THF) and [Me-NP]2MCl2 were studied by multinuclear NMR spectroscopy and X-ray crystallography. Treatment of PdCl2(PhCN)2 with [iPr-NP]Li(THF)2 in THF afforded dimeric {[iPr- NP]PdCl}2, which was reacted with tricyclohexylphosphine to produce [iPr-NP]PdCl(PCy3). The two phosphorus donors in [iPr-NP]PdCl(PCy3) are mutually cis as indicated by the solution NMR and X-ray crystallographic studies. Both {[iPr-NP]PdCl}2 and [iPr-NP]PdCl(PCy3) are highly active catalyst precursors for Suzuki coupling reactions of a wide array of aryl halides, including those featuring electronically deactivated and sterically hindered characteristics. The metathetical reaction of NiCl2(DME) (DME = dimethoxyethane) with [iPr-PNP]Li(THF) and [Cy-PNP]Li(THF), respectively, produced the diamagnetic nickel complexes [iPr-PNP]NiCl and [Cy-PNP]NiCl. These nickel chloride complexes were reacted with Grignard reagents to afford thermally stable nickel alkyl and aryl complexes [iPr-PNP]NiR and [Cy-PNP]NiR (R = Me, Et, n-Bu, Ph). A series of divalent nickel alkoxo, amido, thiolate complexes [iPr-PNP]NiX and [Cy-PNP]NiX (X = OPh, NHPh, SPh) were also easily prepared. Reaction of H[Ph-PNP] with Ni(COD)2 (COD = cycloocta-1,5-diene) produced the transient [Ph-PNP]NiH, which underwent COD insertion to give [Ph-PNP]Ni(£b1- cyclooctenyl). Instead, reactions of Ni(COD)2 with H[iPr-PNP] and H[Cy-PNP], respectively, afforded isolable diamagnetic complexes [iPr-PNP]NiH and [Cy-PNP]NiH without alkene insertion. The reactivity of these nickel hydride complexes was investigated.

Page generated in 0.3143 seconds