Spelling suggestions: "subject:"amineborane"" "subject:"aminoborane""
1 |
Exploring the reactivity of cationic rhodium xantphos complexes with amine-boranesJohnson, Heather C. January 2015 (has links)
This thesis explores the reactivity of amine-boranes with the {Rh(Xantphos)}+ fragment, with the aim of gaining mechanistic insight into the catalytic dehydropolymerisation of the amine-borane H<sub>3</sub>B∙NMeH<sub>2</sub> to yield the polyaminoborane [H<sub>2</sub>BNMeH]<sub>n</sub>. Chapter 2 describes the synthesis of suitable Rh<sup>III</sup> and Rh<sup>I</sup> Xantphos precursors to be used in this investigation. Moreover, the first example of the dehydrogenative B—B homocoupling of the tertiary amine-borane H<sub>3</sub>B∙NMe<sub>3</sub> to form H<sub>4</sub>B<sub>2</sub>•2NMe<sub>3</sub> is reported. The synthesis of the Rh<sup>I</sup> precatalyst introduced in Chapter 2 entails the hydroboration of tert-butylethylene by H<sub>3</sub>B∙NMe<sub>3</sub>. In Chapter 3, the ability of the {Rh(Xantphos)}+ fragment to mediate this hydroboration in a catalytic manner is explored, and a mechanism is presented in which reductive elimination is proposed to be turnover-limiting. Other alkenes and phosphine-boranes are also trialled to determine the scope of the hydroboration. Chapter 4 investigates the catalytic dehydrocoupling of H<sub>3</sub>B∙NMe<sub>2</sub>H and H<sub>3</sub>B∙NMeH<sub>2</sub> with {Rh(Xantphos)}+ to form the dehydrocoupling products [H<sub>2</sub>BNMe<sub>2</sub>]<sub>2</sub> and [H<sub>2</sub>BNMeH]<sub>n</sub>, respectively, and the dehydrocoupling mechanisms are shown to be similar. Both involve an induction period in which the active catalyst is formed (thought to involve N—H activation), and saturation kinetics operate during the productive phase of catalysis. H<sub>2</sub> is shown to inhibit the dehydrocoupling, and lead to production of shorter chain [H<sub>2</sub>BNMeH]<sub>n</sub>. Conversely, using THF as the dehydropolymerisation solvent instead of C<sub>6</sub>H<sub>5</sub>F results in longer chain [H<sub>2</sub>BNMeH]<sub>n</sub>. Finally, Chapter 5 presents new dicationic {Rh(Xantphos)}-based dimers, the formation of which involves loss of a phenyl group from the Xantphos ligands by P—C activation. The dimers are produced by routes involving either dehydrogenative homocoupling of H<sub>3</sub>B∙NMe<sub>3</sub>, or dehydrocoupling of H<sub>3</sub>B∙NMe<sub>2</sub>H. One of these dimers was tested as a catalyst for the dehydrocoupling of H<sub>3</sub>B∙NMe<sub>2</sub>H, and the reaction kinetics appear closely related those obtained using {Rh(Xantphos)}+, suggesting that the active catalysts in each system may be related.
|
2 |
Réaction de nitration en continu pour la synthèse d’un principe actif pharmaceutique : fonctionnalisation d’hétérocycles borés obtenus par borylation électrophile / Continuous nitration reaction for the synthesis of an active pharmaceutical ingredient : functionnalisation of boron heterocycles synthetised by electrophilic borylationCharbonnier, Jean-Baptiste 08 June 2018 (has links)
La fluidique est un outil offrant des avantages industriels notamment en termes de sécurité grâce à un meilleur contrôle thermique mais aussi une diminution des risques due à un engagement de volumes faibles. Cette technologie permet des réactions chimiques plus efficaces grâce à un système plus homogène qui impacte les rendements, la sélectivité ou encore la quantité de réactifs nécessaire. Aujourd’hui, la production de principes actifs pharmaceutiques est réalisée majoritairement en procédé batch. Ainsi, dans une première partie, la microfluidique a été appliquée à la synthèse d’un principe actif pharmaceutique. Les diverses étapes réactionnelles ainsi que les paramètres physiques du système ont été optimisés avec l’utilisation de micromélangeurs. Un procédé multi-étapes a été développé avec une productivité atteignant 100 g.h-1. Des productions ont été réalisées validant les tests préliminaires ainsi que la possibilité de production du principe actif pharmaceutique en continu.Les dérivés du bore sont quant à eux des intermédiaires réactionnels couramment utilisés pour leurs réactivités en synthèse organique. Ainsi, dans une seconde partie, la réaction de borylation électrophile a été étudiée, et plus spécifiquement la synthèse des oxa et des azaborinines grâce au complexe diisopropylamine borane (DIPAB) utilisé comme agent de borylation. Ces dernières molécules ont ensuite été fonctionnalisées grâce à des réactions d’oxydation, d’amination ou d’halogénation. / Fluidic devices offer industrial advantages especially in terms of security due to a better thermal control and a minimization of risks with lower volumes involved. This technology increases chemical reaction efficiencies thanks to a more homogeneous system which affects yields, selectivity and reagent quantities. Nowadays, pharmaceutical active principles are still predominantly produced using batch. Thus, in a first part, microfluidic has been applied to the synthesis of an active pharmaceutical ingredient. Each reaction step as well as the physical parameters of the system have been optimized by using a micromixer. A multi-step process has been developed with a productivity up to 100 g.h-1. Productions have been realized thereby validating preliminary studies including the possibility to produce the active pharmaceutical ingredient.Boron derivatives are chemical intermediates commonly used in organic synthesis for their reactivity. In a second part, electrophilic borylation reaction has been studied with the synthesis of oxa and azaborinins compounds as targets and the use of diisopropylamine borane complex (DIPAB) as a borylation agent. These molecules have then been functionalized through the use of oxidation, amination or halogenation reactions.
|
3 |
Synthesis and Characterization of Highly Porous Borazine-Linked Polymers via Dehydrogenation/Dehydrocoupling of Borane-Amine Adducts and Their Applications to Gas StorageJackson, Karl 08 December 2011 (has links)
A new class of porous polymers has been designed and successfully synthesized by thermal dehydrogenation of several polytopic arylamine-borane adducts and has been designated Borazine-Linked Polymers (BLPs). The polymers reported are constructed of linear, triangular, and tetrahedral amine building units to form 2D and 3D frameworks. The boron sites of the pores are aligned with hydrogen atoms contrasted with the recently reported halogenated BLPs which consist of pore channels aligned with bromine or chlorine atoms. One of the reported BLPs, BLP-2(H), was proven to be crystalline by PXRD, matching the experimental pattern to theoretical patterns calculated from modeled structures. BLPs were found to be thermally stable by thermogravimetric analysis, decomposing at temperatures ~450 ºC. Infrared spectroscopy and 11B MAS NMR spectra confirm the formation of borazine as reported in previous borazine-containing polymers and 13C CP MAS spectra confirmed that the structural integrity of the amine building units were maintained and incorporated in the framework of BLPs. Nitrogen isotherms revealed that BLPs exhibit high surface areas ranging from 1132-2866 m2/g (Langmuir) and 400-2200 m2/g (Brunauer-Emett-Teller, BET) with pore sizes from 7-14 Å. Hydrogen, methane, and carbon dioxide measurements were performed at low pressure (up to 1 atm) and were found to be among the best of organic polymers. High pressure isotherms (up to 40 bar) were also taken at various temperatures ranging from 77-298 K. Isosteric heats of adsorption were calculated using the virial method at low pressures. Gas storage performance of BLPs at 40 bar were found to be: 14.7-42.5 mg/g for H2 uptake at 77 K; 348.9-717.4 mg/g for CO2 uptake at 298 K; and 40.8-116.1 mg/g for CH4 uptake at 298 K. The CO2/CH4 selectivity of BLPs at 298 K up to 40 bar was calculated using the Ideal Adsorbed Solution Theory (IAST) to determine their performance as carbon capture and sequestration materials. Additionally, non-borazine containing nanoporous organic polymers (NPOFs) consisting of all carbon and hydrogen atoms were also synthesized and subjected to low pressure hydrogen storage measurements. The results show that though NPOFs generally exhibit higher surface areas (SALang = 2423-4227 m2/g), the H2 storage capacity of BLPs is superior.
|
4 |
Mechanistic Insights Into Small Molecule (Amine-Boranes, Hydrogen, Methane, Formic Acid Carbon dioxide) Activation Using Electrophilic Ru(II)-ComplexesKumar, Rahul January 2016 (has links) (PDF)
Current fossil fuels (Coal and Petroleum) based economy is not sustainable in the long run because of its dwindling resources, and increasing concerns of climate change due to excessive carbon dioxide (CO2) emission. To mitigate CO2 emission and climate change, scientists across the world have been looking for clean and sustainable energy sources. Among them hydrogen gas (H2) could be more promising because it is the most clean fuel and can be produced from cheap source (water) which is renewable and abundant. Nevertheless, the bottleneck for hydrogen economy is lying in the cost of hydrogen production from water. Still there are no any efficient systems developed which can deliver hydrogen from water in economically viable way. Meanwhile, recent research on old molecule ammonia-borane (H3N•BH3, AB) as hydrogen source has increased the hope towards the hydrogen economy, however, catalytic recycling (or efficient regeneration) of AB from the dehydrogenated product polyborazylene (PB or BNHx) is the biggest hurdle which prevents use of AB as practical hydrogen storage material. Therefore, it is imperative to understand the dehydrogenation pathways of ammonia-borane (or related amine-boranes) which lead to polymeric or oligomeric product(s). On the other hand, methane (CH4) is abundant (mostly untamed) but cleaner fuel than its higher hydrocarbon analogs. To develop highly efficient catalytic systems to transform CH4 into methanol (gas to liquid) is of paramount importance in the field of catalysis and it could revolutionize the petrochemical industry. Therefore, to activate CH4, it is crucial to understand its binding interaction with metal center of a molecular catalyst under homogenous condition. However, these interactions are too weak and hence σ–methane complexes are very elusive. In this context, σ-H2 and σ-borane complexes bear some similarities in σ-bond coordination (and four coordinated boranes are isoelectronic with methane) could be considered as good models to study σ-methane complexes. Studying the H−H and B−H bond activation in H2 and amine-boranes, respectively, would provide fundamental insights into methane activation and its subsequent functionalization. Moreover, the proposed methanol economy by Nobel laureate George Olah seems more promising because methanol can be produced from CH4 (CO2 as well). This in turn will gradually reduce the amount of two powerful greenhouse gases from the earth’s atmosphere. Thus, efficient and economic production of methanol from CH4 and CO2 is one of most challenging problems of today in the field of catalysis and regarded as the holy grails.
Furthermore, very recently formic acid (HCOOH) is envisaged as a promising reversible hydrogen storage material because it releases H2 and CO2 in the presence of a suitable and efficient catalyst or vice versa under ambient conditions.
Objective of the research work:
Taking the account of the above facts, the research work in this thesis is mostly confined to utilize electrophilic Ru(II)-complexes for activation of small molecules such as ammonia-borane (H3N•BH3) [and related amine-borane (Me2HN•BH3)], hydrogen (H2), methane (CH4), formic acid (HCOOH) and carbon dioxide (CO2) and investigation of their mechanistic pathways using NMR spectroscopy under homogeneous conditions. Though these molecules are small, they have huge impacts on chemical industries (energy sector and chemical synthesis: drugs/natural products) and environment [CO2 and CH4 are potent green house gases] as well. However, they are relatively inert molecules, especially CH4 and CO2, and impose very tough challenges to activate and functionalize them into useful products under ambient conditions. The partial oxidation of the strong C−H bond in CH4 for its transformation into methanol under relatively mild condition using an organometallic catalyst is considered as a holy grail in the field of catalysis which is mentioned earlier. More importantly, to develop better and highly efficient homogeneous catalytic systems for the activation of these molecules, it is imperative to understand the mechanistic pathways using well defined homogeneous metal complexes. Thus, an understanding of the interaction of these inert molecules with metal center is obligatory. In this context, discovery of a σ-complex of H2 gave remarkable insights into H−H bond activation pathways and its implications in catalytic hydrogenation reactions. Subsequently, σ-borane complexes of amine-boranes were discovered and found to be relatively more stable because of stronger M−H−B interaction and hence act as good models to study the M−H−C interaction of elusive σ-methane complex.
On the other hand, HCOOH, a promising hydrogen storage material and its efficient catalytic dehydrogenation/decarboxylation and CO2 hydrogenation back to HCOOH using well defined homogeneous catalysts could lead to a sustainable energy cycle. Therefore, it is quite significant to understand the mechanistic pathways of formic acid dehydrogenation/decarboxylation and carbon dioxide reduction to formic acid for the development of next generation efficient catalysts.
Chapter highlights:
Keeping all these in view, we carried out thorough studies on the activation of these small molecules by electrophilic Ru(II)-complexes. This thesis provides useful insights and perspective on the detailed investigation of mechanistic pathways for the activation of small molecules such as H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2 using electrophilic Ru(II)-complexes under homogeneous conditions using NMR spectroscopy.
In Chapter 1 we provide brief overview of small molecule activation using organometallic complexes. This chapter presents pertinent and latest results from literature on the significance of small molecule activation. Although there are several small molecules which need our attention, however, we have focused mainly on H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2.
In Chapter 2, we present detailed investigation of mechanistic pathways of B−H bond activation of H3N•BH3 and Me2HN•BH3 using electrophilic [RuCl(dppe)2][OTf] complex using NMR spectroscopy as a model for methane activation. In these reactions, using variable temperature (VT) 1H, 31P{1H} and 11B NMR spectroscopy we detected several intermediates en route to the final products at room temperature including a σ-borane complex. On the basis of elaborative studies using NMR spectroscopy, we have established the complete mechanistic pathways for dehydrogenation of H3N•BH3/Me2HN•BH3 and formation of B−H bond activated/cleaved products along with several Ru-hydride and Ru-(dihydrogen) complexes. Keeping the B−H bond activation of amine-boranes in view as a model for methane activation, we attempted to activate methane using [RuCl(dppe)2][OTf] complex.
In addition, [Ru(OTf)(dppe)2][OTf] complex having better electrophilicity than [RuCl(dppe)2][OTf], was synthesized and characterized. The [Ru(OTf)(dppe)2][OTf] complex has highly labile triflate bound to Ru-metal and therefore its reactivity studies toward H2 and CH4 were carried out where H2 activation was successfully achieved, however, no any spectroscopic evidence was found for C−H bond activation of CH4.
The Chapter 3 describes the synthesis and characterization of several Ru-Me complexes such as trans-[Ru(Me)Cl(dppe)2], [Ru(Me)(dppe)2][OTf], trans-[Ru(Me)(L)(dppe)2][OTf] (L = CH3CN, tBuNC, tBuCN, H2) with an aim to trap corresponding σ-methane intermediate at low temperature. However, interestingly, we observed spontaneous but gradual methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] complex at room temperature. We thoroughly investigated mechanistic details of methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy, NOESY and DFT calculations. Furthermore, H2 activation was confirmed unambiguously by [Ru(Me)(dppe)2][OTf] and Ru-orthometalated complexes using NMR spectroscopy under ambient conditions. An effort was also made to activate methane using Ruorthometalated complex in pressurized condition of methane in a pressure stable NMR tube. Moreover, preliminary studies on protonation reaction of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy to trap σ-methane at low temperature was carried out which provided us some useful information on dynamics between proton and Ru-Me species.
The Chapter 4 provides useful insights into the mechanistic pathways of dehydrogenation/decarboxylation of formic acid using [RuCl(dppe)2][OTf]. Catalytic dehydrogenation of HCOOH using [RuCl(dppe)2][OTf] was observed in presence of Hunig base (proton sponge). In addition, a complex [Ru(CF3COO)(dppe)2][OTf] was synthesized and characterized using NMR spectroscopy, and found to readily dehydrogenate HCOOH. Moreover, preliminary results on transfer hydrogenation of CO2 into formamide using [RuCl(dppe)2][OTf] as a precatalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source was confirmed using 13C NMR spectroscopy. The mechanisms were proposed for HCOOH dehydrogenation and transfer hydrogenation of CO2 based on our NMR spectroscopic studies. Furthermore, a few test reactions of transfer hydrogenation of selected alkenes such as cyclooctene, acrylonitrile, 1-hexene using [RuCl(dppe)2][OTf] as pre-catalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source showed quantitative conversion to hydrogenated products.
|
Page generated in 0.0474 seconds