• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 415
  • 415
  • 415
  • 403
  • 196
  • 161
  • 158
  • 107
  • 107
  • 107
  • 105
  • 103
  • 103
  • 102
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways: A Dissertation

Oikemus, Sarah R. 08 September 2006 (has links)
Several aspects of Drosophila telomere biology indicate that telomere protection can be regulated by an epigenetic mechanism. First, terminally deleted chromosomes can be stably inherited and do not induce damage responses such as apoptosis or cell cycle arrest. Second, the telomere protection proteins HP1 and HOAP localize normally to these chromosomes and protect them from fusions. Third, unprotected telomeres still contain HeT-A sequences at sites of fusions. Taken together these observations support a model in which an epigenetic mechanism mediated by DNA damage response proteins protects Drosophilatelomeres from fusion. Work presented in this thesis demonstrates that the Drosophila proteins ATM and Nbs are required for the regulation of DNA damage responses similar to their yeast and mammalian counterparts. This work also establishes a role for the ATM and ATR DNA damage response pathways in the protection of both normal and terminally deleted chromosomes. Mutations that disrupt both pathways result in a severe telomere fusion phenotype, similar to HP1 and HOAP mutants. Consistent with this phenotype, HOAP localization at atm,atr double mutant telomeres is completely eliminated. Furthermore, telomeric sequences are still present, even at the sites of fusions. These results support a model in which an epigenetic mechanism mediated by DNA damage response proteins protects Drosophila telomeres from fusion.
182

Perturbation and Modulation of Microtubule Cytoskeletal Elements in Response to the Potentially Oncogenic Molecules, Survivin and P53, and Cytokinesis: A Dissertation

Rosa, Jack 17 July 2006 (has links)
A complex network of protein filaments collectively known as the cytoskeleton carries out several crucial cellular processes. These functions include, but are not limited to, motility, cell shape, mitosis and organelle trafficking. The cytoskeleton is also highly responsive, allowing the cell to alter its shape in response to its immediate needs and environment. One of the major components of the cytoskeleton is the microtubule network. To refer to the array of micro tubules in the cell as a skeleton is a misnomer. Microtubules, by virtue of their structure and nature, are highly dynamic, continuously growing and shrinking. They also bind a variety of accessory molecules that aid in regulating and directing their dynamic activity. In this way they provide a structural basis for integral cell functions that require rapid assembly and disassembly. In some cases, perturbations of the microtubule network results in structural anomalies that lead to undesirable outcomes for the cell, namely chromosomal missegregation events and instability. The accumulation of these events may induce aneuploidy, which has been a fundamental component of tumorigenesis. This dissertation examines the role of the microtubule cytoskeleton within three distinct contexts. The first chapter investigates the association of the anti-apoptotic protein survivin with the microtubule network and its potential impact upon the cell from interphase to cytokinesis. The second chapter of this dissertation explores a little-studied, microtubule-dense organelle, referred to as the midbody, and the highly orchestrated events that take place within it during cytokinesis. The third and final chapter describes a unique experimental condition that may further our understanding of the interaction between the tumor suppressor p53 and the centrosome in cell cycle regulation and tumorigenesis.
183

The Molecular Mechanisms of Activity-Dependent Wingless (Wg)/Wnt Signaling at a Drosophila Glutamatergic Synapse: a Dissertation

Ataman, Bulent 01 February 2008 (has links)
Synaptic plasticity, the ability of synapses to change in strength, underlies complex brain functions such as learning and memory, yet little is known about the precise molecular mechanisms and downstream signaling pathways involved. The major goal of my doctoral thesis was to understand these molecular mechanisms and cellular processes underlying synaptic plasticity using the Drosophilalarval neuromuscular junction (NMJ) as a model system. My work centered on a signaling pathway, the Wg/Wnt signaling pathway, which was found to be crucial for activity-driven synapse formation. The Wg/Wnt family of secreted proteins, besides its well-characterized roles in embryonic patterning, cell growth and cancer, is beginning to be recognized as a pivotal player during synaptic differentiation and plasticity in the brain. At the DrosophilaNMJ, the Wnt-1 homolog Wingless (Wg) is secreted from presynaptic terminals and binds to Frizzled-2 (DFz2) receptors in the postsynaptic muscle. Perturbations in Wg signaling lead to poorly differentiated NMJs, containing synaptic sites that lack both neurotransmitter release sites and postsynaptic structures. In collaboration with other members of the Budnik lab, I set out to unravel the mechanisms by which Wg regulates synapse differentiation. We identified a novel transduction pathway that provides communication between the postsynaptic membrane and the nucleus, and which is responsible for proper synapse development. In this novel Frizzled Nuclear Import (FNI) pathway, the DFz2 receptor is internalized and transported towards the nucleus. The C-terminus of DFz2 is subsequently cleaved and imported into the postsynaptic nucleus for potential transcriptional regulation of synapse development (Mathews, Ataman, et al. Science (2005) 310:1344). My studies also centered on the genetic analysis of Glutamate Receptor (GluR) Interacting Protein (dGRIP), which in mammals has been suggested to regulate the localization of GluRs and more recently, synapse development. I generated mutations in the gene, transgenic strains carrying a dGRIP-RNAi and fluorescently tagged dGRIP, and antibodies against the protein. Remarkably, I found dgrip mutants had synaptic phenotypes that closely resembled those in mutations altering the FNI pathway. Through the genetic analysis of dgrip and components of the FNI pathway, immunoprecipitation studies, electron microscopy, in vivotrafficking assays, time-lapse imaging, and yeast two-hybrid assays, I demonstrated that dGRIP had a hitherto unknown role as an essential component of the FNI pathway. dGRIP was found in trafficking vesicles that contain internalized DFz2. Further, DFz2 and dGRIP likely interact directly. Through the use of pulse chase experiments I found that dGRIP is required for the transport of DFz2 from the synapse to the nucleus. These studies thus provided a molecular mechanism by which the Wnt receptor, DFz2, is trafficked from the postsynaptic membrane to the nucleus during synapse development and implicated dGRIP as an essential component of the FNI pathway (Ataman et al. PNAS (2006) 103:7841). In the final part of my dissertation, I concentrated on understanding the mechanisms by which neuronal activity regulates synapse formation, and the role of the Wnt pathway in this process. I found that acute changes in patterned activity lead to rapid modifications in synaptic structure and function, resulting in the formation of undifferentiated synaptic sites and to the potentiation of spontaneous neurotransmitter release. I also found that these rapid modifications required a bidirectional Wg transduction pathway. Evoked activity induced Wg release from synaptic sites, which stimulated both the postsynaptic FNI pathway, as well as an alternative presynaptic Wg pathway involving GSK-3ß/Shaggy. I suggest that the concurrent activation of these alternative pathways by the same ligand is employed as a mechanism for the simultaneous and coordinated assembly of the pre- and postsynaptic apparatus during activity-dependent synapse remodeling (Ataman et al. Neuron (2008) in press). In summary, my thesis work identified and characterized a previously unrecognized synaptic Wg/Wnt transduction pathway. Further, it established a mechanistic link between activity-dependent synaptic plasticity and bidirectional Wg/Wnt signaling. These findings provide novel mechanistic insight into synaptic plasticity.
184

Regulation of Cell Growth and Differentiation within the Context of Nuclear Architecture by the Runx2 Transcription Factor: a Dissertation

Young, Daniel W 20 September 2005 (has links)
The Runx family of transcription factors performs an essential role in animal development by controlling gene expression programs that mediate cell proliferation, growth and differentiation. The work described in this thesis is concerned with understanding mechanisms by which Runx proteins support this program of gene expression within the architectural context of the mammalian cell nucleus. Multiple aspects of nuclear architecture are influenced by Runx2 proteins including sequence-specific DNA binding at gene regulatory regions, organization of promoter chromatin structure, and higher-order compartmentalization of proteins in nuclear foci. This work provides evidence for several functional activities of Runx2 in relation to architectural parameters of gene. expression for the control of cell growth and differentiation. First, the coordination of SWI/SNF mediated chromatin alterations by Runx2 proteins is found to be a critical component of osteoblast differentiation for skeletal development. Several chromatin modifying enzymes and signaling factors interact with the developmentally essential Runx2 C-terminus. A patent-pending microscopic image analysis strategy invented as part of this thesis work - called intranuclear informatics - has contributed to defining the C-terminal portion of Runx2 as a molecular determinant for the nuclear organization of Runx2 foci and directly links Runx2 function with its organization in the nucleus. Intranuclear informatics also led to the discovery that nuclear organization of Runx2 foci is equivalently restored in progeny cells following mitotic division - a natural perturbation in nuclear structure and function. Additional microscopic studies revealed the sequential and selective reorganization of transcriptional regulators and RNA processing factors during progression of cell division to render progeny cells equivalently competent to support Runx2 mediated gene expression. Molecular studies provide evidence that the Runx proteins have an active role in retaining phenotype by interacting with target gene promoters through sequence-specific DNA binding during cell division to support lineage-specific control of transcriptional programs in progeny cells. Immunolocalization of Runx2 foci on mitotic chromosome spreads revealed several large foci with pairwise symmetry on sister chromatids; these foci co-localize with the RNA polymerase I transcription factor, Upstream Binding Factor (UBFl) at nucleolar organizing regions. A series of experiments were carried out to reveal that Runx2 interacts directly with ribosomal DNA loci in a cell cycle dependent manner; that Runx2 is localized to UBF foci within nucleoli during interphase; that Runx2 attenuates rRNA synthesis; and that this repression of ribosomal gene expression by Runx2 is associated with cell growth inhibition and induction of osteoblast-specific gene expression. This thesis has identified multiple novel mechanisms by which Runx2 proteins function within the hierarchy of nuclear architecture to control cell proliferation, growth and differentiation.
185

Regulation of Life Span by <em>DAF-16</em>/Forkhead Transcription Factor in <em>Caenorhabditis elegans</em>: A Dissertation

Oh, Seung Wook 01 October 2005 (has links)
The insulin/IGF-1 signaling pathway plays a pivotal role in life span regulation in diverse organisms. In Caenorhabditis elegans, a PI 3-kinase signaling cascade downstream of DAF-2, an ortholog of the mammalian insulin and insulin-like growth factor-1 (IGF-1) receptor, negatively regulates DAF-16/forkhead transcription factor. DAF-16 then regulates a wide variety of genes involved in longevity, stress response, metabolism and development. DAF-16 also receives signals from other pathways regulating life span and development. However, the precise mechanism by which DAF-16 directs multiple functions is poorly understood. First, in Chapter II, we demonstrate that JNK is a novel positive regulator of DAF-16 in both life span regulation and stress resistance. Our genetic analysis suggests that the JNK pathway acts in parallel with the insulin-like signaling pathway to regulate life span and both pathways converge onto DAF-16. We also show that JNK-1 directly interacts with and phosphorylates DAF-16. Moreover, in response to heat stress, JNK-1 promotes the translocation of DAF-16 into thc nucleus. Our findings define a novel interaction between the stress response pathway (JNK) and the master regulator of life span (DAF-16), and provide a mechanism by which JNK regulates longevity and stress resistance. Next, in Chapter III, we focus on the downstream targets of DAF-16. Here, we used a modified chromatin immunoprecipitation (ChIP) method to identify direct target promoters of DAF-16. We cloned 103 target sequences containing consensus DAF-16 binding sites and randomly selected 33 targets for further analysis. The expression of majority of these genes is regulated in a DAF-16-dependent manner. Moreover, inactivation of more than 50% of these genes significantly altered DAF-16-dependent functions such as longevity, fat storage and dauer diapause. Our results show that the ChIP-based cloning strategy leads to greater enrichment of DAF-16 target genes, compared to previous studies using DNA micro array or bioinformatics. We also demonstrate that DAF-16 is recruited to multiple promoters to coordinate regulation of its downstream target genes. In summary, we identified the JNK signaling pathway as a novel input into DAF-16 to adapt animals to the environmental stresses. We also revealed a large number of novel outputs of DAF-16. Taken together, these studies provide insight into the complex regulation by DAF-16 to control diverse biological functions and eventually broaden our understanding of aging.
186

Cloning and Cell Cycle Analysis of NuMA, a Phosphoprotein That Oscillates Between the Nucleus and the Mitotic Spindle

Sparks, Cynthia A. 01 September 1995 (has links)
The overall objective of this study was to identify novel proteins of the nuclear matrix in order to contribute to a better understanding of nuclear structure and organization. To accomplish this, a monoclonal antibody specific for the nuclear matrix was used to screen a human λgt11 expression library. Several cDNAs were isolated, cloned, sequenced, and shown to represent NuMA, the nuclear mitotic spindle apparatus protein. Further characterization of the gene and RNA was undertaken in an effort to obtain information about NuMA. The NuMA gene was present at a single site on human chromosome 11q13. Northern and PCR analysis of NuMA mRNA showed a major 7.2 kb transcript and minor forms of 8.0 and 3.0 kb. The minor forms were shown to be alternatively spliced although their functional significance is not yet understood. Immunofluorescence microscopy demonstrated that NuMA oscillates between the nucleus and the microtubule spindle apparatus during the mitotic cell cycle. NuMA appeared as a 200-275 kDa protein detectable in all mammalian cells except human neutrophils. To determine whether NuMA's changes in intracellular distribution correlated with post-translational modifications, the protein's phosphorylation state was examined through the cell cycle using highly synchronized cells. NuMA was a phosphoprotein in interphase and underwent additional phosphorylation events in mitosis. The mitotic phosphorylation events occurred with similar timing to lamin B (G2/M transition) and were concomitant with NuMA's release from the nucleus and its association with the mitotic spindle. However, the mitotic phosphorylation occurred in the absence of spindle formation. Dephosphorylation of NuMA did not correlate with reassociation with the nuclear matrix but occurred in two distinct steps after nuclear reformation. Based on the timing of these events, phosphorylation may playa role in nuclear processes. In conclusion, the work in this dissertation identified NuMA, a nuclear matrix protein and showed that it is phosphorylated during the cell cycle and may be important for nuclear events such as nuclear organization, transcription, or initiation of DNA replication at G1/S.
187

The Role of MKK3 in Mediating Signals to the p38 MAP Kinase Pathway: A Dissertation

Wysk, Mark Allen 08 November 2000 (has links)
p38 mitogen-activated protein (MAP) kinases represent a subgroup of MAP kinases that respond to environmental stress and inflammatory cytokines. p38 MAPK is activated by two upstream kinases, MKK3 and MKK6, by dual phosphorylation on threonine and tyrosine in conserved kinase subdomain VII. Until recently the relative roles of MKK3 and MKK6 have remained unclear. I have undertaken two strategies in an effort to understand the importance of MKK3 as a p38 MAPK activator. First, I cloned and characterized the murine mkk3 gene and determined the structure of the 5'-terminus. Comparison of the murine and human mkk3 genes revealed that the mouse gene encodes a single MKK3 isoform, MKK3b, and the human gene encodes two isoforms, MKK3a and MKK3b. Comparison of the mouse and human mkk3 genes suggests that expression of MKK3a and MKK3b is regulated from different promotors. Analysis of the mkk3 promoter demonstrates that muscle specific expression of murine MKK3b is controlled, in part, by the transcription factors MEF2 and MyoD. Second, I have utilized a gene targeting strategy to disrupt the murine mkk3 gene and to examine the effect on p38 MAPK signaling. I found that there is a p38-specific signaling defect in MKK3 deficient primary mouse embryo fibroblasts (MEF) which correlates with deficits in interleukin (IL)-1 and IL-6 production in response to tumor necrosis factor-α (TNFα) stimulation. In addition there is a defect in TNFα mediated expression of TNFα and macrophage inflammatory proteins (MIP) 1α, MIP1β and MIP2. p38 MAPK-specific signaling defects were also observed in lipopolysaccharide (LPS) stimulated mkk3 (-/-) macrophages. Additionally, mkk3 (-/-) macrophages exhibit defects in LPS and CD40-ligand (CD40L) stimulated IL-12 biosynthesis. Similar data were obtained from CD40L-stimulated mkk3 (-/-) dendritic cells. I also observe that interferon (Ifn)-γ production is diminished during T-helper-1 (TH1) differentiation of CD4+ T-cells derived from mkk3 (-/-) mice. Taken together these data demonstrate a crucial role for p38 MAPK activation by MKK3 in response to the inflammatory cytokine, TNFα and during a TH1 inflammatory response.
188

Regulation of Cell Polarization and Map Kinase Signaling in the Saccharomyces Cerevisiae Pheromone Response Pathway: a Dissertation

Strickfaden, Shelly Catherine 13 March 2007 (has links)
Exposure to external stimuli promotes a variety of cellular responses including changes in morphology, gene expression and cell division status. These responses are promoted by signaling pathways composed of modules that are conserved from lower to higher eukaryotes. In Saccharomyces cerevisiae response to the external stimuli provided by mating pheromone is governed by the pheromone response pathway. This pathway is composed of a G protein coupled receptor/heterotrimeric G protein (Gαβγ) module and a MAP kinase cascade. Activation of this pathway allows the heterotrimeric G protein βγ dimer (Gβγ) to recruit polarity proteins to promote changes in cell morphology and to activate signaling through the MAP kinase cascade. Here we investigate the regulation of these pheromone-induced responses. We first examine how an asymmetric polarization response is generated. Normally, a gradient of pheromone serves as a spatial cue for formation of a polarized mating projection, but cells can still polarize when pheromone is present uniformly. Here we show that an intact receptor/Gαβγ module is required for polarization in response to both a gradient and uniform concentration of pheromone. Further investigation into regulation of Gβγ by Gα revealed that the two interaction interfaces between Gα and Gβ have qualitatively different roles. Our results suggest that one interface controls signaling whereas the other governs coupling to the receptor. Overall our results indicate that communication between the receptor and Gαβγ is required for proper polarization. We then examine how G1 CDKs regulate MAP kinase signaling. Response to pheromone is restricted to the G1 stage of the cell cycle. Once cells commit to a round of division they become refractory to mating pheromone until that round of division is complete. One contributor to this specificity involves inhibition of signaling through the MAP kinase cascade by G1 CDKs, but it was not known how this occurs. Here, we show that the MAP kinase cascade scaffold Ste5 is the target of this inhibition. Cln/CDKs inhibit signaling by phosphorylating sites surrounding a small membrane-binding domain in Ste5, thereby disrupting the membrane localization of Ste5. Furthermore, we found that disrupting this regulation allows cells to arrest at an aberrant non-G1 position. Our findings define a mechanism and a physiological benefit for restricting pheromone-induced signaling to G1. This thesis describes findings related to generation of an asymmetric polarization response, heterotrimeric G protein function, and coordination of differentiation signaling with cell division status. Lessons learned here might be applicable to the regulation of polarization and differentiation responses in other systems as the signaling modules are conserved.
189

Cooperative Oncogenesis and Polyploidization in Human Cancers: A Dissertation

Heilman, Susan Ann 09 May 2007 (has links)
A common phenotype observed in most cancers is chromosomal instability. This includes both structural and numerical chromosomal aberrations, which can promote carcinogenesis. The fusion gene CBFB/MYH11 is created by the structural chromosomal inversion(16)(p13.1q22), resulting in the fusion protein CBFβ-SMMHC, which blocks differentiation in hematopoietic progenitor cells. This mutation alone, however, is not sufficient for transformation, and at least one additional cooperating mutation is necessary. The role of wildtype Cbfb in modulating the oncogenic function of the fusion protein Cbfβ-SMMHC in mice was examined. Transgenic mice expressing the fusion protein, but lacking a wild-type copy of Cbfb, were created to model the effects of these combined mutations. It was found that wild-type Cbfb is necessary for maintaining normal hematopoietic differentiation. Consequently, complete loss of wild-type Cbfb accelerates leukemogenesis in Cbfb/MYH11 mice compared to mice expressing both the fusion and wild-type proteins. While there is no evidence in human patient samples that loss of wild-type Cbfb expression cooperates with the fusion protein to cause transformation, it is apparent from these experiments that wild-type Cbfβ does play a role in maintaining genomic integrity in the presence of Cbfβ-SMMHC. Experiments have also shown that loss of Cbfb leads to accumulation of hematopoietic progenitor cells, which may acquire additional cooperating mutations. Not unlike CBFB/MYH11, the human papillomavirus (HPV) E6 and E7 proteins are not sufficient for cellular transformation. Instead, high risk HPV E7 causes numerical chromosomal aberrations, which can lead to accumulation of additional cooperating mutations. Expression of HPV-16 E7 and subsequent downregulation of the retinoblastoma protein (Rb) has been shown to induce polyploidy in human keratinocytes. Polyploidy predisposes cells to aneuploidy and can eventually lead to transformation in HPV positive cells. There are several possible mechanisms through which E7 may lead to polyploidization, including abrogation of the spindle assembly checkpoint, cleavage failure, abrogation of the postmitotic checkpoint, and re-replication. Rb-defective mouse and human cells were found to undergo normal mitosis and complete cytokinesis. Furthermore, DNA re-replication was not found to be a major mechanism to polyploidization in HPV-E7 cells upon microtubule disruption. Interestingly, upon prolonged mitotic arrest, cells were found to adapt to the spindle assembly checkpoint and halt in a G1-like state with 4C DNA content. This post-mitotic checkpoint is abrogated by E7-induced Rb-downregulation leading to S-phase induction and polyploidy. This dissertation explores two examples of the multi-step pathway in human cancers. While certain genes or genetic mutations are often characteristic of specific cancers, those mutations are often not sufficient for transformation. The genetic or chromosomal abnormalities that they produce often stimulate the additional mutations necessary for oncogenesis. The studies with Cbfb/MYH11 and HPV E7 further exemplify the significance of numerical and structural chromosomal aberrations in multi-step carcinogenesis.
190

Molecular and Behavioral Analysis of <em>Drosophila</em> Circadian Photoreception and Circadian Thermoreception: A Dissertation

Busza, Ania 23 May 2007 (has links)
Circadian clocks are biological timekeepers that help maintain an organism’s behavior and physiological state optimally timed to the Earth’s day/night cycle. To do this, these internal pacemakers must accurately keep track of time. Equally importantly, they must be able to adjust their oscillations in response to external time cues to remain properly synchronized with the environment, and correctly anticipate environmental changes. When the internal clock is offset from its surrounding day/night cycle, clinically relevant disruptions develop, ranging from inconveniences such as jet-lag to more severe problems such as sleep disorders or mood disorders. In this work, I have used the fruit fly, Drosophila melanogaster, as a model organism to investigate how light and temperature can synchronize circadian systems. My initial studies centered on an intracellular photoreceptor, CRYPTOCHROME (CRY). CRY is a blue light photoreceptor previously identified as a major component of the primary light-input pathway into the Drosophila circadian clock. We used molecular techniques to show that after light-activation, CRY binds to the key circadian molecule TIMELESS (TIM). This interaction irreversibly targets TIM, but not CRY, for degradation. Further studies characterizing a newly isolated cry mutant, crym, showed that the carboxyl-terminus of CRY is not necessary for CRY’s ability to impart photic information to the molecular clock. Instead, the C-terminus appears to be necessary for normal CRY stability and protein-protein interactions. Thus, we conclude that in contrast to previous reports on CRYs of other species, where the C-terminal domain was required for transduction of photic information, the C-terminus of DrosophilaCRY has a purely modulatory function. During the second part of my dissertation work, I focused my studies on circadian thermoreception. While the effects of light in synchronization of the Drosophilaclock to environmental cycles have been extensively characterized, significantly less is known about temperature input pathways into the circadian pacemaker. I have used two approaches to look at how temperature affects the circadian system. First, I conducted a series of behavioral analyses looking at how locomotor rhythms can be phase-shifted in response to temperature cycles. By examining the behavior of genetically ablated flies, we determined that the well-characterized neurons controlling morning and evening surges of activity during light/dark cycles are also implicated in morning and evening behaviors under temperature cycles. However, we also find evidence of cells that contribute to modulating afternoon and evening behavior specifically under temperature cycles. These data contribute to a growing number of studies in the field suggesting that pacemaker cells may play different roles under various environmental conditions. Additionally, we provide data showing that intercellular communication plays an important role in regulating circadian response to temperature cycles. When the morning oscillator is absent or attenuated, the evening cells respond abnormally quickly to temperature cycles. My work thus provides information on the roles of different cell groups during temperature cycles, and suggests that beyond simply synchronizing individual oscillating cells, intercellular network activity may also have a role in modulating proper response to environmental time cues. Finally, I present some preliminary work looking at effects of temperature on known circadian molecules. Using a combination of in vivo and cell culture techniques, I have found that TIM protein levels decrease at higher temperatures. My cell culture data suggest that this is a proteasome-independent degradation event. As TIM is also a key molecule in the light-input pathway, the stability of TIM proteins may be a key point of integration for light and temperature input pathways. While additional research needs to be conducted to confirm these effects in vivoin wild-type flies, these preliminary results identify a possible avenue for further study. Taken together, my work has contributed new data on both molecular and neuronal substrates involved in processing light and temperature inputs into the Drosophila circadian clock.

Page generated in 0.0691 seconds