Spelling suggestions: "subject:"diammonium compounds"" "subject:"byammonium compounds""
31 |
Ammonium aluminosilicates : the examination of a mechanism for the high temperature condensation of ammonia in circumplanetary subnebulaeWatkins, Guyton Hampton January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 52-55. / by Guyton Hampton Watkins, Jr. / M.S.
|
32 |
The Effects of Certain Organic Compounds Upon the Bacterial Deposition of Ferric Hydroxide from Ferric Ammonium CitratePapadopoulou, Polykarpia C. 08 1900 (has links)
This thesis studies the effects of certain organic compounds upon the bacterial deposition of ferric hydroxide from ferric ammonium citrate.
|
33 |
Evaluation of a sanitizing system using isopropyl alcohol quaternary ammonium formula and carbon dioxide for dry-processing environmentsKane, Deborah M. January 1900 (has links)
Master of Science / Food Science / Kelly J. K. Getty / Dry-processing environments are particularly challenging to clean and sanitize because water introduced into systems not designed for wet cleaning can favor growth and establishment of pathogenic microorganisms such as Salmonella. The objective was to determine the efficacy of isopropyl alcohol quaternary ammonium (IPAQuat) formula and carbon dioxide (CO[subscript]2) sanitizer system for eliminating Enterococcus faecium and Salmonella on food contact surfaces. Coupons of stainless steel and conveyor belting material used in dry-processing environments were spot-inoculated in the center of 5 × 5 cm coupons with approximately 7.0 log CFU/ml of E. faecium and up to 10 log CFU/ml of a six-serotype composite of Salmonella and subjected to IPAQuat-CO[subscript]2 sanitation treatments using exposure times of 30 s, 1 or 5 min. After sanitation treatments, wet coupons were swabbed for post-treatment survivors. Preliminary experiments included coupons which were soiled with a flour and water solution prior to inoculation and subsequent sanitation treatments. For the main study, inoculated surfaces were soiled with a breadcrumb flour blend and allowed to sit on the lab bench for a minimum of 16 h before sanitation. Preliminary results showed that IPAQuat-CO[subscript]2 sanitizing system was effective in reducing approximately 3.0 logs of E. faecium and Salmonella from clean and soiled surfaces after 1 min exposure but higher initial inoculum levels were needed to demonstrate >5 log reductions. For the main study, pre-treatment Salmonella populations were approximately 7.0 log CFU/25 cm[superscript]2 and post-treatment survivors were 1.3, < 0.7 (detection limit), and < 0.7 log CFU/25 cm[superscript]2 after 30 s, 1 or 5 min sanitizer exposures, respectively, for both clean and soiled surfaces. Treatment with IPAQuat-CO[subscript]2 sanitation system using 30 s sanitizer exposures resulted in 5.7 log CFU/25 cm[superscript]2 reductions whereas, greater than 6.0 log CFU/25 cm[superscript]2 reductions were observed for sanitizer exposures of 1 and 5 min. The IPAQuat-CO[subscript]2 sanitation system reduced 6 logs CFU/25 cm[superscript]2 of Salmonella with sanitizer exposure times of at least 1 min. The IPAQuat-CO[subscript]2 system would, therefore, be an effective sanitation system to eliminate potential contamination from Salmonella on food contact surfaces and have application in facilities that process dry ingredients or low-moisture products.
|
34 |
Fate and effect of quaternary ammonium antimicrobial compounds on biological nitrogen removal within high-strength wastewater treatment systemsHajaya, Malek Ghaleb 20 May 2011 (has links)
High strength wastewater (HSWW) generated in food processing industries is characterized by high organic carbon and nitrogen content, and thus high oxygen demand. Biological nitrogen removal (BNR) is a technology widely used for the treatment of HSWW. Food processing facilities practice sanitation to keep food contact surfaces clean and pathogen-free. Benzalkonium chlorides (BACs) are cationic quaternary ammonium antimicrobial compounds (QACs) common in industrial antimicrobial formulations. BAC-bearing wastewater generated during sanitation applications in food processing facilities is combined with other wastewater streams and typically treated in BNR systems. The poor selectivity and target specificity of the antimicrobial BACs negatively impact the performance of BNR systems due to the susceptibility of BNR microbial populations to BAC. Objectives of the research were: a) assessment and quantification of the inhibitory effect of QACs on the microbial groups, which mediate BNR in HSWW treatment systems while treating QAC-bearing HSWW; b) evaluation of the degree and extent of the contribution of QAC adsorption, inhibition, and biotransformation on the fate and effect of QACs in BNR systems. A laboratory-scale, multi-stage BNR system was continuously fed with real poultry processing wastewater amended with a mixture of three benzalkonium chlorides. The nitrogen removal efficiency initially deteriorated at a BAC feed concentration of 5 mg/L due to complete inhibition of nitrification. However, the system recovered after 27 days of operation achieving high nitrogen removal efficiency, even after the feed BAC concentration was stepwise increased up to120 mg/L. Batch assays performed using the mixed liquors of the BNR system reactors, before, during, and post BAC exposure, showed that the development of BAC biotransformation capacity and the acquisition of resistance to BAC contributed to the recovery of nitrification and nitrogen removal. Kinetic analysis based on sub-models representing BNR processes showed that BAC inhibition of denitrification and nitrification is correlated with BAC liquid-phase and solid-phase concentrations, respectively. Simulations using a comprehensive mathematical BNR model developed for this research showed that BAC degradation and the level of nitrification inhibition by BAC were dynamic brought about by acclimation and enrichment of the heterotrophic and nitrifying microbial populations, respectively. The fate and effect of BACs in the BNR system were accurately described when the interactions between adsorption, inhibition, and resistance/biotransformation were considered within the conditions prevailing in each reactor. This work is the first study on the fate and effect of antimicrobial QACs in a continuous-flow, multi-stage BNR system, and the first study to quantify and report parameter values related to BAC inhibition of nitrification and denitrification. Results of this study enable the rational design and operation of BNR systems for the efficient treatment of QAC-bearing wastewater. The outcome of this research provides information presently lacking, supporting the continuous use of QACs as antimicrobial agents in food processing facilities, when and where needed, while avoiding any negative impacts on biological treatment systems and the environment.
|
35 |
Benzalkonio ir metenamino analogų antimikrobinio aktyvumo nustatymas in vitro ir jo priklausomybė nuo aerozolio dalelių krūvio / Establishment of benzalkonium and methenamine analoques antimicrobic activity in vitro and its dependency upon the electrical charge of the particles in the aerosolGrigonis, Aidas 14 February 2007 (has links)
Antibacterial effectiveness in vitro of the original quaternary ammonium compounds that were synthesized in the Laboratory of Biologically active substances was determined and the dependence of this activity upon chemical structure of the compound was established. Also generalisations have been made concerning the regularity of this dependency, the effectiveness of the compounds was compared to benzalkonium chloride, their advantages and disadvantages were discussed. Acute toxicity of the most effective compound was established and compared to that of benzalkonium chloride.
It was found that these compounds showed good antibacterial activity against Gr+ and Gr- bacteria and low toxicity, thus this original data was summarized in the patent Nr. 4712.
For the first time it was found that upon disintegration of quaternary methenamonium compounds new quaternary ammonium compounds, aldehydes and ammonia are produced. The first two of the three show further antimicrobic activity.
Using quaternary ammonium salts and cholrhexydine a biocide for disinfection was created. The created biocide was tested for effectiveness when used for disinfection of air in the premises, horizontal and vertical surfaces. The compound was used in the form of aerosols and electro-aerosols. The research data showed that strong concentrations of Dezinfektas IV are necessary (up to 30%), but small amount of the solution per volume is enough (20-30 ml/m3). Ten times higher concentration is needed for... [to full text]
|
36 |
Influence of ammonium lignosulfonate fertilizer mixtures on corn (Zea mays L.) growth and nutrient compositionRussell, Elizabeth F. (Elizabeth Fiona) January 1992 (has links)
Fertilizer P fixation and fertilizer N losses in soils may be reduced through additions of polyphenolic compounds. The influence of ammonium lignosulfonate (NH$ sb4 sp+$-LS) on triple superphosphate (TSP) efficiency was investigated in a soil incubation study using three Quebec soils and in a growth bench study using one soil. For the incubation study, soils were analyzed for pH and P extractability, as a function of NH$ sb4 sp+$-LS rate and time. In the growth bench study, TSP and NH$ sb4 sp+$-LS were applied at varying rates and corn (Zea mays L.) dry matter yields and nutrient compositions analyzed. Similar studies were conducted in subsequent growth bench studies, to evaluate combinations of NH$ sb4 sp+$-LS, diammonium phosphate (DAP), and urea on two soils. / Ammonium LS increased soluble P levels when applied with TSP. The effect was most significant in fine textured soils, and increased with time. This improved P availability to plants, without affecting growth. The optimum NH$ sb4 sp+$-LS:P$ sb2$O$ sb5$ application ratio was approximately 2.8:1. Ammonium LS did not improve availability of DAP-P in either of the subsequent experiments, nor did it improve urea fertilizer efficiency. Some NH$ sb4 sp+$-LS-urea-DAP formulations did, however, improve corn growth beyond that obtained when only urea and DAP were applied in combination. In nutrient amended soils, applying NH$ sb4 sp+$-LS DAP was detrimental to growth and, for some application rates, reduced nutrient uptake.
|
37 |
Metagenomic and metatranscriptomic investigation of microorganisms exposed to benzalkonium chloride disinfectantsOh, Seung Dae 12 January 2015 (has links)
Benzalkonium chlorides (BACs) are widely used, broad-spectrum disinfectants and frequently detected in the environment, even at toxic levels for life. Since such disinfectants can induce broad resistance capabilities, BACs may fuel the emergence of antibiotic resistance in the environment. A substantial body of literature has reported that exposure to BACs causes antibiotic resistance; yet, other studies suggest that the resistance linkage is rare, unsystematic, and/or clinically insignificant. Accordingly, whether or not disinfectant exposure mediates antibiotic resistance and, if so, what molecular mechanisms underlie the resistance link remains to be clearly elucidated. Further, understanding how microbial communities degrade BACs is important not only for alleviating the possible occurrence of antibiotic resistance but also reducing the potential risks to environmental and public health.
An integrated strategy that combines metagenomics, metatranscriptomics, genetics, and traditional culture-dependent approaches was employed to provide novel insights into these issues. The integrative approach showed that a microbial community exposed to BACs can acquire antibiotic resistance through two mechanisms: i) horizontal transfer of previously uncharacterized efflux pump genes conferring resistance to BACs and antibiotics, which were encoded on a conjugative plasmid and co-selected together upon BACs and ii) selective enrichment of intrinsically multi-drug resistant organisms. Further, a microbial community adapts to BAC exposure via a variety of mechanisms, including selective enrichment of BAC-degrading species and amino acid substitutions and horizontal transfer of genes related to BAC resistance and degradation. The metatranscriptomic data suggests that the BAC-adapted microbial community metabolized BACs by cooperative interactions among its members. More specifically, Pseudomonas nitroreducens cleaved (i.e., dealkylated) BACs, metabolized the alkyl chain (the dealkylated product of BACs), and released benzyldimethylamine (the other product of BACs), which was further metabolized by other community members (e.g., Pseudomonas putida).
Collectively, this study demonstrates the role of BACs in promoting antibiotic resistance and advances current understanding of a microbial community degrading BACs. The results of this work have important implications for (appropriate) usage of disinfectants and for assessing, predicting, and optimizing biological engineering processes treating BAC-bearing waste streams.
|
38 |
Fate and effect of quaternary ammonium compounds in biological systemsTezel, Ulas 09 January 2009 (has links)
Quaternary ammonium compounds (QACs) are ubiquitous contaminants found worldwide in both engineered and natural systems. QACs are toxic to aquatic organisms and cause co-selection for antibiotic resistance, thus providing a reservoir of antibiotic-resistant bacteria, as well as antibiotic resistance genes in QAC-polluted environments. The objectives of the research presented here were to: a) systematically assess the fate and toxicity of QACs using quantitative structure-activity relationships (QSAR); b) evaluate the biotransformation potential of QACs under aerobic, anoxic and anaerobic conditions; and c) assess the potential toxicity of QACs biotransformation products. Nine QACs, belonging to three homologous groups -- monoalkonium, dialkonium and benzalkonium chlorides -- were the target QACs. The QACs critical micelle concentration (CMC) was determined. Then, the CMC was used as a descriptor to derive relationships between QAC structure and partitioning to biosolids as well as acute Microtox® toxicity. QACs with low CMCs had a relatively high adsorption affinity for biosolids and a lower toxicity than QACs with higher CMCs, which suggests that QACs that are more mobile and more (bio)available are more toxic. The biotransformation potential of benzalkonium chlorides (BAC) -- the most commonly used QACs found in engineered and natural biological systems -- under aerobic, methanogenic, nitrate reducing, and fermentative conditions was evaluated using bioenergetics and batch bioassays. The aerobic BAC biotransformation involved sequential dealkylation and debenzylation steps resulting in the formation of benzyl dimethyl amine, and dimethyl amine, respectively. The bacterial community involved in the aerobic BAC degradation was mainly composed of species belonging to the Pseudomonas genus. All QACs tested were recalcitrant under methanogenic conditions and inhibited methanogenesis at and above 25 mg QAC/L. Under nitrate reducing and fermentative conditions, BAC was transformed to alkyldimethyl amines via an abiotic reaction known as modified Hofmann degradation and a biotic reaction known as fumarate addition, respectively. Both reactions are based on a mechanism known as nucleophilic substitution. The discovery of BAC transformation by the above mentioned two reactions is the first ever report to document QAC transformation under anoxic/anaerobic conditions and delineate the transformation pathway.
|
39 |
Synthesis and evaluation of an inorganic microsphere composite for the selective removal of ¹³⁷cesium from acidic nuclear waste solutions /Tranter, Troy J. January 1900 (has links)
Thesis (Ph. D., Chemical Engineering)--University of Idaho, May 2006. / Major professor: Vivek Utgikar. Includes bibliographical references (leaves 99-107). Also available online (PDF file) by subscription or by purchasing the individual file.
|
40 |
Tecnologia de preparacao de oxido de uranio(IV) apropriado para conversao a tetrafluoreto de uranioRIBAS, ANTONIO G.S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:24:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:28Z (GMT). No. of bitstreams: 1
00034.pdf: 1919974 bytes, checksum: ed7e98a843b601b5ae6e2b59da8aa6bc (MD5) / Dissertacao (Mestrado) / IEA/D / Escola Politecnica, Universidade de Sao Paulo - POLI/USP
|
Page generated in 0.0619 seconds