• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution of nanoparticles to the flame retardancy of epoxy resins / Apport des nanoparticules à l'ignifugation de résines époxydes

Gérard, Caroline 21 June 2011 (has links)
Ce mémoire porte sur l’étude de l’ignifugation d’une résine époxyde grâce à l’utilisation de nanoparticules. L’incorporation de Polyhedral Oligomeric Silsesquioxanes (POSS) ou de nanotubes de carbone seuls dans la matrice apporte une amélioration très limitée des propriétés feu. La fonctionnalisation covalente de nanotubes de carbone par des fonctions retardatrices de flamme a été réalisée et caractérisée, mais elle n’augmente pas les performances feu de la matrice chargée en nanotubes de carbone. La combinaison entre un retardateur de flamme phosphoré (APP) et les nanotubes de carbone révèle l’existence d’un effet antagoniste entre ces deux charges. Au contraire, l’utilisation de POSS en combinaison avec l’APP apporte une synergie. L’étude de la dégradation thermique de ces systèmes montre que les interactions entre ces constituants modifient la viscosité de la matrice dégradée. La capture des gaz de dégradation est améliorée dans le cas APP/POSS, ce qui résulte en la création d’une couche protectrice plus tôt qu’avec le système de référence contenant l’APP seul. De plus, la présence de POSS rend possible la création de silicophosphates renforçant le résidu. Au contraire, le résidu du système à base de nanotubes de carbone est très rigide et se fissure durant la combustion, ce qui empêche la bonne formation de la couche protectrice. / This thesis aims at flame-retarding an epoxy resin through the use of nanoparticles. Incorporation of Polyhedral Oligomeric Silsesquioxane (POSS) or carbon nanotubes alone in the matrix provides little enhancement of the reaction to fire. The covalent functionalization of carbon nanotubes by grafting fire-retardant moieties has been carried out and characterized, but it does not enhance the reaction to fire of the epoxy matrix filled with carbon nanotubes. The combination between a phosphorus-based flame-retardant (APP) and carbon nanotubes reveals an antagonistic effect between these two fillers. On the contrary, using POSS in combination with APP provides a synergy. The study of the thermal degradation of these systems shows that the interactions between these fillers modify the viscosity of the degraded matrix. The trapping of degradation gases is enhanced in the case of APP/POSS, which results in the creation of a protective layer earlier than with the reference system containing APP alone. Furthermore, the presence of POSS permits the creation of silicophosphates which reinforce the residue. On the contrary, the residue of the formulation containing carbon nanotubes is excessively stiff and it cracks during combustion, hindering the proper formation of the protective layer.
2

Procédés d’élaboration de matériaux biosourcés à propriétés retard au feu améliorées : application à l’acide polylactique / Processing of fire retardant biobased material : application to polylactic acid

Réti, Christelle 01 December 2009 (has links)
Cette étude propose un procédé d’ignifugation par traitement en masse du PLA basé sur l’incorporation d’un retardateur de flamme phosphoré (APP) et de composés issus des ressources renouvelables agissant comme source de carbone dans le système intumescent. L’évaluation des propriétés RF des différents matériaux selon divers tests normalisés a permis de mettre en évidence que la formulation PLA/APP/amidon présentait les meilleures performances en termes de tenue au feu. Il se développe en surface du matériau une structure intumescente qui protège l’échantillon de l’action d’une flamme ou d’une source de chaleur et permet de limiter les transferts de gaz et de matière. Afin de tenter d’expliquer le comportement au feu de la formulation optimale, les caractéristiques physiques telles que la viscosité et la conductivité thermique du système ont été évaluées. De plus, pour mettre en évidence les éventuelles interactions chimiques, la dégradation thermique des additifs et des formulations a été étudiée. L’amélioration des propriétés feu est également due à la formation d‘espèces polyaromatiques principalement liées par des ponts phosphohydrocarbonés. Par ailleurs, plusieurs solutions ont été apportées afin d’améliorer la compatibilité entre le PLA et l’amidon et ainsi augmenter les propriétés mécaniques de la formulation intumescente / The aim of this study is to evaluate the efficiency of different intumescent formulations to flame retard polylactic acid (PLA) by the incorporation of a phosphorous flame retardant compound (APP) and products coming from renewable resources. PLA/APP/starch composite shows the best fire retardant properties. Upon heating, the material forms a foamed cellular charred layer which protects the underlying material from the action of heat flux and flame and slows down heat and mass transfer between the gas and the condensed phase. The efficiency of intumescent structure can be explained by the viscosity of the formulation. Moreover, the explanation of the improvement of the fire properties is because of chemical reactions between the components of the formulation leading to thermally stable species like phosphocarbonaceous compound. Several solutions have been studied to improve mechanical properties of intumescent formulation.
3

Synergistic fire- and mechanical effect of biochar and ammonium polyphosphate in epoxy composite

Olausson, Anton, Jönsson, Ludvig January 2023 (has links)
Polymer composites are used in a varying extent and are challenging the use of traditional materials due to the push towards sustainable development. They have replaced steels and aluminum alloys in applications. Polymer composites are used in load-bearing and semi-load bearing applications in automotive, transport and aerospace industry due to their good characteristics. Polymer poses beneficial characteristics such as chemical stability, corrosion resistance, attractive strength-to-weight ratio, and be processed with ease. However, many polymers are highly flammable, making them a fire hazard. The fact that polymer composite is highly flammable, they need to undergo fire safety treatment that are sustainable towards the environment and humans. In this study biochar and ammonium polyphosphate (APP) were added in different combinations to epoxy resin. The purpose was to evaluate the synergistic effects that biochar and APP has on epoxy composite and how it will affect the fire- and mechanical properties. Additionally, developing a composite that retains a high compressive strength while increasing its thermal stability. Lastly, evaluate if the best performing composite could be recommended for load/semi-load‑bearing applications along with being sustainable towards the environment and humans. This thesis was conducted through literature study and laboratory work where three different tests were done such as cone calorimeter (CC), thermogravimetric analysis (TGA) and compressive test. The CC and TGA test were done to analyze the synergistic effect APP and biochar had on epoxy composites fire properties, but also determine which composition obtained the best fire properties. The compressive test was done to analyze the synergistic effect APP and biochar had on the epoxy composites mechanical properties. From the CC- and TGA tests it was observed that biochar and APP individually improved the fire properties of the epoxy where a decrease in peak heat release rate per unit area (PHRRPUA) and a decrease in mass loss was obtained. Additionally, it was noticed that the addition of only APP had a greater impact in improving the fire properties compared to only biochar. However, a combination of 15 wt.% biochar and 20 wt.% APP improved the fire properties the most. The compression tests indicated that biochar reduced the compressive strength drastically compared to the neat epoxy, since the biochar-based samples exhibited a porous structure. The addition of only APP in the epoxy showed a minimal reduction in compressive strength compared to neat epoxy. In conclusion, biochar and APP were improving the fire properties of epoxy composite whereas the compressive strength decreased. Overall, by an addition of only APP to the epoxy, the fire properties were enhanced where the compressive strength was conserved compared to neat epoxy. Since the composition with only APP performed the best overall, this composition can thereby be recommended for development in load/semi-load-bearing applications.

Page generated in 0.0688 seconds