• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal desorption, photodesorption, and photodissociation of water on amorphous ice and lunar surfaces

DeSimone, Alice Johnson 13 January 2014 (has links)
The temperature-programmed desorption profiles of water from three lunar analogs were measured. These experiments showed that glassy materials were hydrophobic, that water on multiphase materials occupied a continuum of adsorption sites, and that feldspar exhibited significant chemisorption of water. The competition between photodissociation and photodesorption of amorphous solid water (ASW) was investigated on three substrates: copper with a thin oxide coating, an impact melt breccia from Apollo 16, and a mare basalt from Apollo 17. The rotational temperature of desorbing H₂O did not vary significantly with substrate, but the H₂O time-of-flight spectra were broader on the lunar slabs than on copper. Additionally, the cross sections for water removal at low coverages were higher on the lunar slabs than on copper. O(³PJ) produced by 157-nm irradiation of ASW on the same three substrates was measured as a function of spin-orbit state, H₂O exposure, and irradiation time. The same Maxwell-Boltzmann components were present in each case, with translational temperatures of 10,000 K, 1800 K, 400 K, and the surface temperature, but the relative intensities of these components differed widely between substrates. Evidence for diffusion out of pores in the ASW and in the lunar slabs was observed for H2O exposures of at least 1 Langmuir. Cross sections for H2O and O(3PJ) depletion due to 157-nm irradiation of ASW were applied to icy grains in the rings of Saturn, and corresponding cross sections on the lunar substrates were used to estimate the flux of water desorbing from the Moon and the density of oxygen atoms in the lunar atmosphere.
2

Low-Energy Electron Induced Processes in Molecular Thin Films Condensed on Silicon and Titanium Dioxide Surfaces

Lane, Christopher Don 09 April 2007 (has links)
The focus of the presented research is to examine the fundamental physics and chemistry of low-energy electron-stimulated reactions on adsorbate covered single crystal surfaces. Specifically, condensed SiCl₄ on the Si(111) surface and condensed H₂O on the TiO₂ (110) surface have been studied. By varying adsorbate film thicknesses, the coupling strength of the target molecule to the substrate and surrounding media dictates the progression of the electron induced reactions. To investigate the electron interactions with SiCl₄ on the Si(111) surface, desorbing cations and neutrals were detected via time of flight mass spectrometry (ToF-MS) where neutral chlorine atoms were ionized using a resonance enhanced multi-photon ionization (REMPI) technique. Structure in the cation and neutral yields were assigned to molecular excitations. At an incident electron energy of 10 eV, a resonance structure in the neutral yields was attributed to a negative ion resonance and observed in thick and thin films of SiCl₄. With monoenergetic electrons, specific surface reactions can be controlled which have implications for film growth, surface patterning and masking, and etching. For the H₂O/TiO₂ (110) system, the water interactions with the TiO₂ surface are revealed through the strong electron induced reaction dependencies on the water coverage. Understanding the nonthermal reaction landscape of H₂O on the TiO₂ (110) surface is crucial for developing the system as a catalytic source of hydrogen. The electron-stimulated oxidation of the TiO₂ (110) surface and electron induced sputtering of H ₂O was investigated. Irradiation of water films ([coverage]< 3 ML) oxidized the TiO₂ (110) surface similarly as surface oxidation via O₂ deposition. Each H₂O molecule in the first monolayer seems to be a target for the incoming electron initiating the oxidation. However, water coverages greater than a monolayer limited the oxidation process. The electron-stimulated desorption and sputtering yields of water from the TiO₂ (110) surface were measured as a function of water coverage. Surprisingly, the amount of water sputtered from the surface is nonlinearly dependent on water coverage.

Page generated in 0.08 seconds