• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silicon Tetrachloride Mediated Asymmetric Aldol Addition Reaction

Tan, Duygu 01 January 2013 (has links) (PDF)
Aldol addition reaction is one of the most important and most studied carbon-carbon bond forming reactions in organic chemistry. Recent studies focused on the catalytic version of this chemistry. Different from the classical Mukaiyama-type aldol reactions, chiral lewis bases have been used as promoters. In the presence of SiCl4, these reactions proceed through a cyclic transition state leading to anti aldol product as a major product with moderate-to-good diastereo and enantioselectivities. Phosphoramide derivatives, BINAPO, BINAPO derivatives, N,N-dioxides and N-oxides have been extensively used for this purpose. Recently, our group has designed new phosphine oxy aziridinyl phosphonates (POAP) as chiral Lewis bases. These promoters were used for the asymmetric aldol addition reaction between cyclohexanone and different aldehydes in the presence of SiCl4. Moreover, our previously designed phosphine oxy ferrocenyl substituted aziridinyl methanol (POFAM) ligands were also tested as Lewis bases. Among these 6 potential promoters, POAP-A gave the best results, and the aldol product were obtained in moderate to good yields up to 80%, and with moderate enantioselectivities (the highest, 66%) after standard optimization studies. Aldehyde screening experiments provided the highest enantioselectivity (68%) with 2- naphthaldehyde.
2

Low-Energy Electron Induced Processes in Molecular Thin Films Condensed on Silicon and Titanium Dioxide Surfaces

Lane, Christopher Don 09 April 2007 (has links)
The focus of the presented research is to examine the fundamental physics and chemistry of low-energy electron-stimulated reactions on adsorbate covered single crystal surfaces. Specifically, condensed SiCl₄ on the Si(111) surface and condensed H₂O on the TiO₂ (110) surface have been studied. By varying adsorbate film thicknesses, the coupling strength of the target molecule to the substrate and surrounding media dictates the progression of the electron induced reactions. To investigate the electron interactions with SiCl₄ on the Si(111) surface, desorbing cations and neutrals were detected via time of flight mass spectrometry (ToF-MS) where neutral chlorine atoms were ionized using a resonance enhanced multi-photon ionization (REMPI) technique. Structure in the cation and neutral yields were assigned to molecular excitations. At an incident electron energy of 10 eV, a resonance structure in the neutral yields was attributed to a negative ion resonance and observed in thick and thin films of SiCl₄. With monoenergetic electrons, specific surface reactions can be controlled which have implications for film growth, surface patterning and masking, and etching. For the H₂O/TiO₂ (110) system, the water interactions with the TiO₂ surface are revealed through the strong electron induced reaction dependencies on the water coverage. Understanding the nonthermal reaction landscape of H₂O on the TiO₂ (110) surface is crucial for developing the system as a catalytic source of hydrogen. The electron-stimulated oxidation of the TiO₂ (110) surface and electron induced sputtering of H ₂O was investigated. Irradiation of water films ([coverage]< 3 ML) oxidized the TiO₂ (110) surface similarly as surface oxidation via O₂ deposition. Each H₂O molecule in the first monolayer seems to be a target for the incoming electron initiating the oxidation. However, water coverages greater than a monolayer limited the oxidation process. The electron-stimulated desorption and sputtering yields of water from the TiO₂ (110) surface were measured as a function of water coverage. Surprisingly, the amount of water sputtered from the surface is nonlinearly dependent on water coverage.

Page generated in 0.0713 seconds