• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 33
  • 8
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 43
  • 43
  • 32
  • 28
  • 22
  • 21
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

探討心理興奮性藥物之環境相依行為致敏化之神經行為機制 / Investigation of the neurobehavioral mechanisms underlying context-dependent behavioral sensitization to psychostimulants

林懷瑠 Unknown Date (has links)
本研究以心理興奮性藥物(psychosimulants)引發之行為致敏化作為探討環境與藥物的配對學習如何影響個體長期使用藥物後對藥物的反應。首先於實驗一建立安非他命引發自發活動致敏化基本模式,以及不同的重複注射情境下致敏化的表現,結果顯示經由本實驗操弄注射情境的程序可有效引發在測試箱、飼養籠,和第三處的安非他命致敏化表現,並且致敏化自發活動表現量在測試箱組顯著高於飼養籠組和第三處組。實驗二對致敏化形成歷程中可能與安非他命配對的刺激進行消除,以釐清致敏化形成歷程中連結學習的要素,結果顯示消除程序沒有降低致敏化活動量的效果。實驗三使用中樞注射麩胺酸受體拮抗劑NBQX於依核以影響致敏化的連結學習歷程,結果顯示該操弄可阻斷在飼養籠重複注射安非他命引發的行為致敏化。測試箱組經過該操弄後其致敏化活動量顯著降低但仍有顯著的致敏化活動量表現。實驗四分別破壞前額葉皮質兩處次級區塊以瞭解其在致敏化連結學習歷程中扮演的角色,結果顯示破壞背側前額葉皮質只阻斷在飼養籠注射安非他命所引起的行為致敏化,破壞腹側前額葉皮質只阻斷測試箱組行為致敏化。綜合上述研究結果顯示安非他命引發致敏化的形成深受藥物配對的環境影響而可區分環境相依與環境獨立之行為致敏化,環境相依行為致敏化的行為機制可由場合建立的觀點加以解釋。在依核內之麩胺酸傳導和前額葉皮質次級區塊之功能在兩種行為致敏化上的差異可以反應環境相依和環境獨立行為致敏化的潛在神經機制可能有所不同。 / The present study investigated the neurobehavioral mechanisms of d-amphetamine (AMP) induced behavioral sensitization, with the aim to elucidate the role of associative learning between the context and drug. Experiment 1 compared the sensitization effects of repeated (AMP) conducted in three different contexts by the measurement of locomotion activity. The results showed that behavioral sensitization of locomotion was significantly induced AMP repeatedly injected in each of the contexts. However, the magnitudes of behavioral sensitization were different among those three conditions. The highest degree of sensitized locomotion was observed in the group with repeated AMP conducted in the test box in comparing to the other two groups with drug administration in the home cage and a third place, Experiment 2 was designed to examine the effects of extinction on the injection procedure and the contextual cue on the behavioral sensitization of AMP induced in the test box, the home cage, and a third place. The resu lts clearly indicate all three types of locomotion sensitization were resistant to the manipulation of extinction. Experiment 3 tested the effects of NBQX, a glutamatergic AMPA receptor antagonist, infused into the nucleus accumbens on the establishment of behavioral sensitization of AMP induced in the test box and the home cage. This intra-accumbens NBQX treatment significantly suppressed the formation of behavioral sensitization of AMP induced in the home cage, but not in the test box. Experiment 4 investigated the lesion effects of medial prefrontal cortex (mPFC) on the establishment of behavioral sensitization of AMP induced in the test box and the home cage. Two subareas of the mPFC, dorsal and ventral parts, were lesioned by ibotenic acid. The findings indicated a double dissociation existing in the mPFC subareas for the behavioral sensitization of AMP induced in different contexts. The lesion of ventral mPFC inhibited the formation of behavioral sensitization of AMP induced in the test box, whereas the lesion of dorsal mPFC attenuated the AMP sensitization induced at the home cage. Together, these data suggest that the association of the repeated drug effects pairing to the context is critical for the development of behavioral sensitization. Such sensitization can further be differentiated into the context-depentdent and context-independent forms based on the uniqueness of contextual cue in the environment where drug is administered. Different neural substrates are involved in the establishment of behavioral sensitization of AMP.
152

Neurotoxins

Kostrzewa, Richard M. 01 January 2016 (has links)
The era of selective neurotoxins arose predominately in the 1960s with the discovery of the norepinephrine (NE) isomer 6-hydroxydopamine (6-OHDA), which selectively destroyed noradrenergic sympathetic nerves in rats. A series of similarly selective neurotoxins were later discovered, having high affinity for the transporter site on nerves and thus being accumulated and able to disrupt vital intraneuronal processes, to lead to cell death. The Trojan Horse botulinum neurotoxins (BoNT) and tetanus toxin bind to glycoproteins on the neuronal plasma membrane, then these stealth neurotoxins are taken inside respective cholinergic or glycinergic nerves, producing months-long functional inactivation but without overtly destroying those nerves. The mitochondrial complex I inhibitor rotenone, while lacking total specificity, still destroys dopaminergic nerves with some selectivity; and importantly, results in the neural accumulation of synuclein-to model Parkinson’s disease (PD) in animals. Other neurotoxins target specific subtypes of glutamate receptors and produce excitotoxicity in nerves with that receptor population. The dopamine D2 receptor agonist quinpirole, termed a selective neurotoxin, produces a behavioral state replicating some of the notable features of schizophrenia, but without overtly destroying nerves. These processes, mechanisms or treatment-outcomes account for the means by which neurotoxins are classified as such, and represent some of the means by which neurotoxins as a group are able to destroy or functionally inactivate nerves; or replicate an altered neurological state. Selective neurotoxins have proven to be important in gaining insight into biochemical processes and mechanisms responsible for survival or demise of a nerve. Selective neurotoxins are useful also for animal modeling of human neural disorders such as PD, Alzheimer disease, attention-deficit hyperactivity disorder (ADHD), Lesch-Nyhan disease, tardive dyskinesia, schizophrenia and others. The importance of neurotoxins in neuroscience will continue to be ever more important as even newer neurotoxins are discovered.
153

Survey of Selective Neurotoxins

Kostrzewa, Richard M. 01 January 2014 (has links)
There has been an awareness of nerve poisons from ancient times. At the dawn of the twentieth century, the actions and mechanisms of these poisons were uncovered by modern physiological and biochemical experimentation. However, the era of selective neurotoxins began with the pioneering studies of R. Levi-Montalcini through her studies of the neurotrophin "nerve growth factor" (NGF), a protein promoting growth and development of sensory and sympathetic noradrenergic nerves. An antibody to NGF, namely, anti-NGF - developed in the 1950s in a collaboration with S. Cohen - was shown to produce an "immunosympathectomy" and virtual lifelong sympathetic denervation. These Nobel Laureates thus developed and characterized the first identifiable selective neurotoxin. Other selective neurotoxins were soon discovered, and the compendium of selective neurotoxins continues to grow, so that today there are numerous selective neurotoxins, with the potential to destroy or produce dysfunction of a variety of phenotypic nerves. Selective neurotoxins are of value because of their ability to selectively destroy or disable a common group of nerves possessing (1) a particular neural transporter, (2) a unique set of enzymes or vesicular transporter, (3) a specific type of receptor or (4) membranous protein, or (5) other uniqueness. The era of selective neurotoxins has developed to such an extent that the very definition of a "selective" neurotoxin has warped. For example, (1) N-methyl-D- aspartate receptor (NMDA-R) antagonists, considered to be neuroprotectants by virtue of their prevention of excitotoxicity from glutamate receptor agonists, actually lead to the demise of populations of neurons with NMDA receptors, when administered during ontogenetic development. The mere lack of natural excitation of this nerve population, consequent to NMDA-R block, sends a message that these nerves are redundant - and an apoptotic cascade is set in motion to eliminate these nerves. (2) The rodenticide rotenone, a global cytotoxin that acts mainly to inhibit complex I in the respiratory transport chain, is now used in low dose over a period of weeks to months to produce relatively selective destruction of substantia nigra dopaminergic nerves and promote alpha-synuclein deposition in brain to thus model Parkinson's disease. Similarly, (3) glial toxins, affecting oligodendrocytes or other satellite cells, can lead to the damage or dysfunction of identifiable groups of neurons. Consequently, these toxins might also be considered as "selective neurotoxins," despite the fact that the targeted cell is nonneuronal. Likewise, (4) the dopamine D2-receptor agonist quinpirole, administered daily for a week or more, leads to development of D2-receptor supersensitivity - exaggerated responses to the D2-receptor agonist, an effect persisting lifelong. Thus, neuroprotectants can become "selective" neurotoxins; nonspecific cytotoxins can become classified as "selective" neurotoxins; and receptor agonists, under defined dosing conditions, can supersensitize and thus be classified as "selective" neurotoxins. More examples will be uncovered as the area of selective neurotoxins expands. The description and characterization of selective neurotoxins, with unmasking of their mechanisms of action, have led to a level of understanding of neuronal activity and reactivity that could not be understood by conventional physiological observations. This chapter will be useful as an introduction to the scope of the field of selective neurotoxins and provide insight for in-depth analysis in later chapters with full descriptions of selective neurotoxins.
154

MSK1 regulates homeostatic and experience-dependent synaptic plasticity

Corrêa, Sonia A.L., Hunter, C.J., Palygin, O., Wauters, S.C., Martin, K.J., McKenzie, C., McKelvey, K., Morris, R.G., Pankratov, Y., Arthur, J.S., Frenguelli, B.G. January 2012 (has links)
No / The ability of neurons to modulate synaptic strength underpins synaptic plasticity, learning and memory, and adaptation to sensory experience. Despite the importance of synaptic adaptation in directing, reinforcing, and revising the behavioral response to environmental influences, the cellular and molecular mechanisms underlying synaptic adaptation are far from clear. Brain-derived neurotrophic factor (BDNF) is a prime initiator of structural and functional synaptic adaptation. However, the signaling cascade activated by BDNF to initiate these adaptive changes has not been elucidated. We have previously shown that BDNF activates mitogen- and stress-activated kinase 1 (MSK1), which regulates gene transcription via the phosphorylation of both CREB and histone H3. Using mice with a kinase-dead knock-in mutation of MSK1, we now show that MSK1 is necessary for the upregulation of synaptic strength in response to environmental enrichment in vivo. Furthermore, neurons from MSK1 kinase-dead mice failed to show scaling of synaptic transmission in response to activity deprivation in vitro, a deficit that could be rescued by reintroduction of wild-type MSK1. We also show that MSK1 forms part of a BDNF- and MAPK-dependent signaling cascade required for homeostatic synaptic scaling, which likely resides in the ability of MSK1 to regulate cell surface GluA1 expression via the induction of Arc/Arg3.1. These results demonstrate that MSK1 is an integral part of a signaling pathway that underlies the adaptive response to synaptic and environmental experience. MSK1 may thus act as a key homeostat in the activity- and experience-dependent regulation of synaptic strength.
155

Tumour necrosis factor alpha induces rapid reduction in AMPA receptor-mediated calcium entry in motor neurones by increasing cell surface expression of the GluR2 subunit: relevance to neurodegeneration

Rainey-Smith, S.R., Andersson, D.A., Williams, R.J., Rattray, Marcus January 2010 (has links)
No / The alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNFalpha) have both been implicated in motor neurone vulnerability in amyotrophic lateral sclerosis/motor neurone disease. TNFalpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNFalpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/mL, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using fura-2-acetoxymethyl ester microfluorimetry, we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggest that TNFalpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in amyotrophic lateral sclerosis.

Page generated in 0.0462 seconds