Spelling suggestions: "subject:"amphiphilic peptide"" "subject:"mphiphilic peptide""
1 |
Synthesis and characterization of self-assembling peptides and depsipeptides for use in tissue engineering and in aqueous zinc batteriesLiu, Xinzhi 07 1900 (has links)
Self-assembly is an autonomous process where components organize themselves into structures via noncovalent interactions without human intervention. Ultrashort amphiphilic peptides are typical self-assembly molecules with specific sequence motifs which consist of three to seven amino acids. Due to their amphiphilic structure which carries a dominant hydrophobic tail and a polar head group, these peptides can self-assemble to construct nanofibrous scaffolds system to form hydrogels, organogels or aerogels. The nanofibrous scaffolds formed by amphiphilic peptides are very similar to the fiber structure found in collagen which plays an essential role in extracellular matrix showing the potential of applying these peptide scaffolds together in culturing native human cells. Thus the derivate of amphiphilic peptides depsipeptide in which we replaced one amide bond with an ester bond is also worthwhile to explore a novel penitential material for Tissue Engineering. At the same time, because of the perfect biocompatibility of amphiphilic peptides made up of natural l-amino acids and also the excellent gelation properties providing a solution for zinc dendrite growth in Zn batteries, it will be also meaningful to combine the rationally designed peptide gelation system to Zn batteries. This dissertation describes how to characterize and use ultrashort amphiphilic depsipeptide for tissue engineering and use ultrashort amphiphilic peptide for the electrolyte of Zn batteries. The first chapter provides us with an introduction to self-assembly material, 3D bioprinting, and Zn batteries. The second chapter introduces a novel method to synthesize the depsipeptide fully based on solid phase peptide synthesis (SPPS) and also shows the different properties, especially the gelation behavior by clarifying its mechanism via doing the characterization of depsipeptide. At the end of the second chapter, depsipeptide is proved to be a potential material in 3D bioprinting. The third chapter reveals how we synthesized and characterized the amphiphilic peptide and applied it to the Zn batteries. The cycling stability got promoted compared with bard Zn batteries in symmetrical Zn-Zn cells while the formation of Zn dendrite was also suppressed. The promising results suggest peptide gelation systems are promising electrolytes for use in Zn batteries.
|
2 |
Autoassemblage de peptides amphiphiles et de polymères pour l'élaboration de nouvelles membranes / Self-assembly of amphiphilic peptides and polymers for the development of new membranesBabut, Thomas 21 January 2019 (has links)
Le but de ce projet est de synthétiser des peptides amphiphiles ayant une partie structurante en feuillet beta afin d'obtenir des micelles cylindriques. La partie hydrophile du peptide est associée à un polymère qui va être le support de la membrane car le peptide seul ne se structure qu'en micelle cylindrique. Une fois la membrane créée, le peptide peut être enlevé ou alors laissé au sein de la membrane et cette membrane a des applications dans la filtration spécifique car elle est nanostructurée. / The goal of this project is to synthesize amphphilic peptides with a structuring part in beta sheet in order to obtain cylindrical mycelles. The hydrophylic part of the peptide is associated to a polymer which will be the support of the membrane because the peptide itself doesn't associate to crate a membrane. With the membrane, we can remove the peptide or not and this membrane has specific filtration properties since it is nanostructured.
|
3 |
STRATEGIC MODIFICATIONS TO OPTIMIZE A CELL PENETRATING ANTIMICROBIAL PEPTIDEReena Blade (7289858) 31 January 2022 (has links)
<p>Pathogenic bacteria are evolving to drug resistant
strains at alarming rates. The threat posed by drug resistant bacterial
infections emphasize the need to establish new antimicrobial agents. Of
immediate concern regarding the dangers of antibiotic resistance is the
existence of intracellular bacteria, which find refuge from bactericidal devices
by hiding within mammalian cells. Unfortunately, many therapeutics, such as
vancomycin, do not possess membrane penetrating abilities to achieve efficacious
eradication of bacteria at the subcellular level, allowing infections to
persist. In an effort to target pathogens that thrive within mammalian cells,
features of cell penetrating peptides (CPPs) and antimicrobial peptides (AMPs)
were combined to develop a dual action antimicrobial CPP, cationic amphiphilic
polyproline helices (CAPHs). CAPHs have proven to be an effective antimicrobial
agent to combat an array of both Gram negative and Gram positive bacteria. </p>
<p> </p>
<p>Herein, to improve CAPHs activity, we have
demonstrated how the incorporation of strategic modifications has resulted in
increased cell uptake, alternative subcellular locations for CAPHs, and
advanced antimicrobial potency. By simultaneously extending the helical length
of CAPHs while incorporating different hydrophobic groups in place of the original
isobutyl moiety that compose CAPHs we have created a <b>FL-P17-5R </b>series of peptides with five carbon aliphatic motifs: <b>Fl-P17-5B</b>, <b>Fl-P17-5C</b> and <b>Fl-P17-5L. </b>Through
these modifications the peptides proved to be 2 to 5-fold more efficient in
accumulating in macrophage cells than parent peptide Fl-P14LRR and where able
to clear intracellular pathogenic bacteria, such as <i>Listeria</i>, from infected macrophages by 26 to 54%. </p>
<p> </p>
<p>In addition to making the <b>Fl-P17-5R</b> series of CAPHs to potentiate CAPHs activity, modifications
to the cationic moiety of CAPHs were explored. By incorporating a new cationic
monomer into the CAPHs sequence, a guanylated amino proline (GAP) residue, we produced
<b>Fl-P14GAP</b>, a CAPHs peptide with an
organized cationic charge display. This modification resulted in a 5-fold
increase in cell uptake and a 2 to 16-fold decrease in minimum inhibitory
concentration (MIC) values against strains of enteric and ESKAPE pathogens in
comparison to Fl-P14LRR. <b>Fl-P14GAP</b>
also executed superior clearance of intracellular pathogenic bacteria that
resulted in the complete eradication of a drug resistant strain of <i>A. baumannii</i> from infected macrophage
cells. Overall, our efforts with the <b>Fl-P17-5R</b>
series of CAPHs and <b>Fl-P14GAP</b> have
strengthened the therapeutic potential of CAPHs in the hopes of addressing the
need for novel antibiotics with the propensity to eradicate intracellular
pathogens.</p>
|
Page generated in 0.0357 seconds