• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l’amplitude des fibrés cotangents d’intersections complètes / On the ampleness of the cotangent bundles of complete intersections

Xie, Song-Yan 30 May 2016 (has links)
Dans la première partie de cette thèse, nous établissons la Conjectured'amplitude de Debarre : Le fibré cotangent T_X* d'une intersection X =H_1 cap ... cap H_c de c >= N/2 hypersurfaces génériques H_i dansP^N de degrés élevés d_1, ..., d_c >> 1 est ample.Tout d'abord, nous élaborons une interprétation géométrique desdifférentielles symétriques sur les espaces projectifs. De cettemanière, nous reconstruisons les différentielles symétriques deBrotbek sur X, lorsque les équations définissantes des hypersurfacesH_1, ..., H_c sont de type Fermat généralisé. De plus, nous dévoilonsdes familles nouvelles de différentielles symétriques de degréinférieur sur toutes les intersections possibles de X avec deshyperplans de coordonnées.Ensuite, nous introduisons ce que nous appelons la Méthode desCoefficients Mobiles ainsi que le Coup du Produit afin d'accomplir unedémonstration de la conjecture d'amplitude de Debarre. De plus, nousobtenons une borne effective inférieure sur les degrés : d_1,...,d_c >=N^N^2. Enfin, grace à des résultats connus au sujet de la conjecturede Fujita, nous établissons que Sym^k T_X* est très ample pour tout k>= 64 (d_1 + ... + d_c)^2.Dans la seconde partie de cette thèse, nous étudions la Conjectured'amplitude généralisée de Debarre stipulant que sur un corpsalgébriquement clos K de caractéristique quelconque, sur une variétéK-projective lisse P de dimension N munie de c >= N/2 fibrés endroites très amples L_1, ..., L_c, pour tous degrés élevés d_1,...,d_c >= d_* >> 1, pour c hypersurfaces génériques H_i dans lessystèmes linéaires L_i^d_i, l'intersection complète X := H_1 cap ... capH_c possède un fibré cotangent T_X* qui est ample.Sur de telles intersections X, nous construisons ce que nous appelonsdes `formes différentielles symétriques de Brotbek généralisées', etnous établissons que si L_1, ..., L_c sont presque proportionnelsmutuellement, alors la conjecture d'amplitude généralisée de Debarreest valide. Notre méthode est effective, et dans le cas où L_1 = ... =L_c, nous obtenons la meme borne inférieure d_* = N^N^2 que dans lapremière partie.Ces deux travaux sont parus sur arxiv.org. / In the first part of this thesis, we establish the Debarre AmplenessConjecture: The cotangent bundle T_X^* of the intersection X = H_1cap ... cap H_c of c >= N/2 generic hypersurfaces H_i in P^N of highdegrees d_1, ..., d_c >> 1 is ample.First of all, we provide a geometric interpretation of symmetricdifferential forms in projective spaces. Thereby, we reconstructBrotbek's symmetric differential forms on X, where the defininghypersurfaces H_1, ..., H_c are generalized Fermat-type. Moreover, weexhibit unveiled families of lower degree symmetric differential formson all possible intersections of X with coordinate hyperplanes.Thereafter, we introduce what we call the `moving coefficients method'and the `product coup' to settle the Debarre Ampleness Conjecture. Inaddition, we obtain an effective lower degree bound: d_1, ...,d_c >=N^{N^2}. Lastly, thanks to known results about the Fujita Conjecture,we establish the very-ampleness of Sym^k T_X^* for all k >= 64 (d_1 +... + d_c)^2.In the second part, we study the General Debarre Ampleness Conjecture,which stipulates that, over an algebraically closed field K with anycharacteristic, on an N-dimensional smooth projective K-variety Pequipped with c >= N/2 very ample line bundles L_1, ..., L_c, for alllarge degrees d_1, ..., d_c >= d_* >> 1, for generic c hypersurfacesH_i in the complete linear system L_i^d_i, the complete intersection X:= H_1 cap ... cap H_c has ample cotangent bundle T_X^*.On such an intersection variety X, we construct what we call`generalized Brotbek's symmetric differential forms', and we establishthat, if L_1,...,L_c are almost proportional mutually, then theGeneral Debarre Ampleness Conjecture holds true. Our method iseffective, and in the case where L_1 = ... = L_c, we obtain the samelower degree bound d_* = N^{N^2} as in the first part.These two works have been posted on arxiv.org.
2

Expansions géométriques et ampleur / Geometric expansions and ampleness

Carmona, Juan Felipe 10 June 2015 (has links)
Le résultat principal de cette thèse est l'étude de l'ampleur dans des expansions des structures géométriques et de SU-rang oméga par un prédicat dense/codense indépendant. De plus, nous étudions le rapport entre l'ampleur et l'équationalite, donnant une preuve directe de l'équationalite de certaines théories CM-triviales. Enfin, nous considérons la topologie indiscernable et son lien avec l'équationalite et calculons la complexité indiscernable du pseudoplan libre / The main result of this thesis is the study of how ampleness grows in geometric and SU-rank omega structures when adding a new independent dense/codense subset. In another direction, we explore relations of ampleness with equational theories; there, we give a direct proof of the equationality of certain CM-trivial theories. Finally, we study indiscernible closed sets—which are closely related with equations—and measure their complexity in the free pseudoplane

Page generated in 0.0429 seconds