• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • Tagged with
  • 19
  • 19
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeted Gene Editing Using CRISPR/Cas9 in a Wheat Protoplast System

Cui, Xiucheng January 2017 (has links)
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has become a promising tool for targeted gene editing in a variety of organisms including plants. In this system, a 20 nt sequence on a single guide RNA (sgRNA) is the only gene-specific information required to modify a target gene. Fusarium head blight (FHB) is a devastating disease in wheat caused by the fungus Fusarium graminearum. The trichothecene it produces, deoxynivalenol (DON), is a major mycotoxin contaminant causing food production loss both in quality and yield. In this project, we used the CRISPR/Cas9 system to modify three wheat genes identified in previous experiments, including an ABC transporter (TaABCC6), and the Nuclear Transcription Factor X box-binding-Like 1 (TaNFXL1), both associated with FHB susceptibility, and a non-specific Lipid Transfer Protein (nsLTP) named TansLTP9.4 which correlates with FHB resistance. Two sgRNAs were designed to target each gene and were shown in an in vitro CRISPR/Cas9 assay to guide the sequence-specific cleavage with high efficiency. Another assay for CRISPR/Cas9 was established by the optimization of a wheat protoplast isolation and transformation system. Using a construct expressing a green fluorescent protein (GFP) as a positive control, estimated transformation efficiencies of about 60% were obtained with different batches of protoplasts. High-throughput sequencing of PCR amplicons from protoplasts transformed with editing constructs clearly showed that the three genes have been successfully edited with efficiencies of up to 42.2%. In addition, we also characterized by RT-qPCR the expression pattern of 10 genes in DON-treated protoplasts; seven of the genes were induced by DON in the protoplasts, consistent with their previously identified DON induction in treated wheat heads, while three genes expressed differentially between DON-treated wheat heads and protoplasts. Preliminary bioinformatics analyses showed that these differentially expressed genes are involved in different plant defense mechanisms.
2

Tillage and Crop Rotation Shape Soil-borne Oomycete Communities in Corn, Soybean and Wheat Cropping Systems

Gahagan, Alison Claire 20 September 2023 (has links)
Soil-borne oomycetes include plant pathogens that cause substantial losses in the agricultural sector. To better manage this important group of pathogens, it is critical to understand how they respond to common agricultural practices, such as tillage and crop rotation. Here, a long-term field experiment with a split-plot design with tillage as the main plot factor (conventional tillage [CT] vs. no till [NT], 2 levels) and rotation as the subplot factor (monocultures of soybean, corn, or wheat, and corn-soybean-wheat rotation, 4 levels) was sampled. Post-harvest oomycete communities were characterized over three consecutive years (2016-2018) by metabarcoding the Internal Transcribed Spacer 1 (ITS1) region of soil DNA extracts. The community contained 292 Amplicon Sequence Variants (ASVs) and was dominated by Globisporangium spp. (85.1% in abundance, 203 ASV) and Pythium spp. (10.4%, 51 ASV). NT decreased diversity and community compositional structure heterogeneity, while crop rotation only affected the community structure under CT. Soil and crop health represented by soybean seedling vitality was lowest in soils under CT cultivating soybean or corn, while grain yield of the three crops responded differently to tillage and crop rotation regimes. The interaction effects of tillage and rotation on most oomycetes species accentuated the complexity of managing these pathogens.
3

High-throughput DNA Sequencingin Microbial Ecology : Methods and Applications

Hugerth, Luisa January 2016 (has links)
Microorganisms play central roles in planet Earth’s geochemical cycles, in food production, and in health and disease of humans and livestock. In spite of this, most microbial life forms remain unknown and unnamed, their ecological importance and potential technological applications beyond the realm of speculation. This is due both to the magnitude of microbial diversity and to technological limitations. Of the many advances that have enabled microbiology to reach new depth and breadth in the past decade, one of the most important is affordable high-throughput DNA sequencing. This technology plays a central role in each paper in this thesis. Papers I and II are focused on developing methods to survey microbial diversity based on marker gene amplification and sequencing. In Paper I we proposed a computational strategy to design primers with the highest coverage among a given set of sequences and applied it to drastically improve one of the most commonly used primer pairs for ecological surveys of prokaryotes. In Paper II this strategy was applied to an eukaryotic marker gene. Despite their importance in the food chain, eukaryotic microbes are much more seldom surveyed than bacteria. Paper II aimed at making this domain of life more amenable to high-throughput surveys. In Paper III, the primers designed in papers I and II were applied to water samples collected up to twice weekly from 2011 to 2013 at an offshore station in the Baltic proper, the Linnaeus Microbial Observatory. In addition to tracking microbial communities over these three years, we created predictive models for hundreds of microbial populations, based on their co-occurrence with other populations and environmental factors. In paper IV we explored the entire metagenomic diversity in the Linnaeus Microbial Observatory. We used computational tools developed in our group to construct draft genomes of abundant bacteria and archaea and described their phylogeny, seasonal dynamics and potential physiology. We were also able to establish that, rather than being a mixture of genomes from fresh and saline water, the Baltic Sea plankton community is composed of brackish specialists which diverged from other aquatic microorganisms thousands of years before the formation of the Baltic itself. / <p>QC 20150505</p>
4

Tagging systems for sequencing large cohorts

Neiman, Mårten January 2010 (has links)
<p>Advances in sequencing technologies constantly improves the throughput andaccuracy of sequencing instruments. Together with this development comes newdemands and opportunities to fully take advantage of the massive amounts of dataproduced within a sequence run. One way of doing this is by analyzing a large set ofsamples in parallel by pooling them together prior to sequencing and associating thereads to the corresponding samples using DNA sequence tags. Amplicon sequencingis a common application for this technique, enabling ultra deep sequencing andidentification of rare allelic variants. However, a common problem for ampliconsequencing projects is formation of unspecific PCR products and primer dimersoccupying large portions of the data sets.</p><p>This thesis is based on two papers exploring these new kinds of possibilities andissues. In the first paper, a method for including thousands of samples in the samesequencing run without dramatically increasing the cost or sample handlingcomplexity is presented. The second paper presents how the amount of high qualitydata from an amplicon sequencing run can be maximized.</p><p>The findings from the first paper shows that a two-tagging system, where the first tagis introduced by PCR and the second tag is introduced by ligation, can be used foreffectively sequence a cohort of 3500 samples using the 454 GS FLX Titaniumchemistry. The tagging procedure allows for simple and easy scalable samplehandling during sequence library preparation. The first PCR introduced tags, that arepresent in both ends of the fragments, enables detection of chimeric formation andhence, avoiding false typing in the data set.</p><p>In the second paper, a FACS-machine is used to sort and enrich target DNA covered emPCR beads. This is facilitated by tagging quality beads using hybridization of afluorescently labeled target specific DNA probe prior to sorting. The system wasevaluated by sequencing two amplicon libraries, one FACS sorted and one standardenriched, on the 454 showing a three-fold increase of quality data obtained.</p> / QC20100907
5

Latent feature models and non-invasive clonal reconstruction

Marass, Francesco January 2017 (has links)
Intratumoural heterogeneity complicates the molecular interpretation of biopsies, as multiple distinct tumour genomes are sampled and analysed at once. Ignoring the presence of these populations can lead to erroneous conclusions, and so a correct analysis must account for the clonal structure of the sample. Several methods to reconstruct tumour clonality from sequencing data have been proposed, spanning methods that either do not consider phylogenetic constraints or posit a perfect phylogeny. Models of the first type are typically latent feature models that can describe the observed data flexibly, but whose results may not be reconcilable with a phylogeny. The second type, instead, generally comprises non-parametric mixture models, with strict assumptions on the tumour’s evolutionary process. The focus of this dissertation is on the development of a phylogenetic latent feature model that can bridge the advantages of these two approaches, allowing deviations from a perfect phylogeny. The work is recounted by three statistical models of increasing complexity. First, I present a non-parametric model based on the Indian Buffet Process prior, and highlight the need for phylogenetic constraints. Second, I develop a finite, phylogenetic extension of the previous model, and show that it can outperform competing methods. Third, I generalise the phylogenetic model to arbitrary copy-number states. Markov chain Monte Carlo algorithms are presented to perform inference. The models are tested on datasets that include synthetic data, controlled biological data, and clinical data. In particular, the copy-number generalisation is applied to longitudinal circulating tumour DNA samples. Liquid biopsies that leverage circulating tumour DNA require sensitive techniques in order to detect mutations at low allele fractions. One method that allows sensitive mutation calling is the amplicon sequencing strategy TAm-Seq. I present bioinformatic tools to improve both the development of TAm-Seq amplicon panels and the analysis of its sequencing data. Finally, an enhancement of this method is presented and shown to detect mutations de novo and in a multiplexed manner at allele fractions less than 0.1%.
6

Probing Nano-Specific Interactions Between Bacteria and Antimicrobial Nanoparticles Using Microbial Community Changes and Gene Expression

Moore, Joe Dallas 01 December 2017 (has links)
Antimicrobial engineered nanomaterials (ENM) are increasingly incorporated into products despite limited understanding of the interactions between ENMs and bacteria that lead to toxic impacts. The hazard posed by increasing environmental release of antimicrobial ENMs is also poorly characterized. The overall objective of this thesis is to inform questions about the types of interactions that lead to an ENM inducing bacterial toxicity. Many antimicrobial ENMs are soluble, and the ion plays an important role in their toxicity. Some believe that, beyond release of ions, ENM toxicity is expected to derive from a nanoparticle (NP)-specific effect. This research compares bacterial responses to ENMs, their metal salts, and/or their transformed species within different experimental settings to improve our understanding of the interactions that enable ENM bacterial toxicity. The first objective is to characterize the potential hazard posed by pristine and transformed antimicrobial ENMs on microbial communities within a complex environmental system. One pair of ENMs (Ag0 and Ag2S) led to differential short-term impacts on surficial sediment microbial communities, while the other did not (CuO and CuS), showing that ENM transformation does not universally lead to distinct impacts. The metal ion (Cu2+) had a more profound microbial community impact than did any of the four ENMs. By 300 days the microbial community structure and composition re-converged, suggesting minimal long-term impacts of high pulse inputs of antimicrobial ENMs on microbial communities within complex environments. The second objective is to identify NP-specific effects of a common antimicrobial ENM on a model bacterium. Analysis of transcriptional responses identified NP-specific induction of a membrane stress responsive gene, providing evidence of a NP-specific effect. Otherwise, our results suggest that CuO NP toxicity triggers the same stress responses as does Cu2+, but at more moderate levels. Two ion treatments with the same total Cu input – one with pulse addition and one with gradual addition that was meant to better represent the slow dissolution of the CuO NP – led to temporally distinct responses. This calls for the use of more representative ion controls for comparison against soluble NP impacts in future nanotoxicity studies. The third objective is to investigate the potential use of CuO ENMs to reduce virulence and growth of an emerging bacterial pathogen. CuO NP exposure led to reduction in relative expression of three Staphylococcus aureus virulence factor genes, especially in methicillinresistant S. aureus (MRSA) clinical isolates. Growth was inhibited at high CuO NP concentrations for all four isolates, too. Comparison across all genes assayed showed isolatespecific transcriptional responses, but with NP- and ion-induced responses showing clear differences for each isolate, too. Altogether, this research contributes novel knowledge that will guide efforts to characterize potential hazard from release of ENMs into the environment and to apply ENMs for effective antibacterial treatment.
7

Effect of Soil Amendments from Antibiotic Treated Cows on Antibiotic Resistant Bacteria and Genes Recovered from the Surfaces of Lettuce and Radishes: Field Study

Fogler, Kendall Wilson 06 February 2018 (has links)
Cattle are commonly treated with antibiotics that may survive digestion and promote antibiotic resistance when manure or composted manure is used as a soil amendment for crop production. This study was conducted to determine the effects of antibiotic administration and soil amendment practices on microbial diversity and antibiotic resistance of bacteria recovered from the surfaces of lettuce and radishes grown using recommended application rates. Vegetables were planted in field plots amended with raw manure from antibiotic-treated dairy cows, composted-manure from cows with different histories of antibiotic administration, or a chemical fertilizer control (12 plots, n=3). Culture-based methods, 16SrDNA amplicon sequencing, qPCR and shot-gun metagenomics were utilized to profile bacteria and characterize the different gene markers for antibiotic resistance. Culture-based methodologies revealed that lettuce grown in soils amended with BSAs had significantly larger clindamycin resistant populations compared to control conditions. Growth in BSAs was associated with significant changes to the bacterial community composition of radish and lettuce. Total sul1 copies were 160X more abundant on lettuce grown in manure and total tet(W) copies were 30X more abundant on radishes grown in manure. Analysis of shotgun metagenomic data revealed that lettuce grown in manure-amended soils possessed resistance genes for three additional antibiotic classes compared to other treatments. This study demonstrates that raw, antibiotic-exposed manure may alter microbiota and the antibiotic resistance genes present on vegetables. Proper composting of BSAs as recommended by the U.S. Department of Agriculture and Environmental Protection Agency is recommended to mitigate the spread of resistance to vegetable surfaces. / MSLFS
8

Tagging systems for sequencing large cohorts

Neiman, Mårten January 2010 (has links)
Advances in sequencing technologies constantly improves the throughput andaccuracy of sequencing instruments. Together with this development comes newdemands and opportunities to fully take advantage of the massive amounts of dataproduced within a sequence run. One way of doing this is by analyzing a large set ofsamples in parallel by pooling them together prior to sequencing and associating thereads to the corresponding samples using DNA sequence tags. Amplicon sequencingis a common application for this technique, enabling ultra deep sequencing andidentification of rare allelic variants. However, a common problem for ampliconsequencing projects is formation of unspecific PCR products and primer dimersoccupying large portions of the data sets. This thesis is based on two papers exploring these new kinds of possibilities andissues. In the first paper, a method for including thousands of samples in the samesequencing run without dramatically increasing the cost or sample handlingcomplexity is presented. The second paper presents how the amount of high qualitydata from an amplicon sequencing run can be maximized. The findings from the first paper shows that a two-tagging system, where the first tagis introduced by PCR and the second tag is introduced by ligation, can be used foreffectively sequence a cohort of 3500 samples using the 454 GS FLX Titaniumchemistry. The tagging procedure allows for simple and easy scalable samplehandling during sequence library preparation. The first PCR introduced tags, that arepresent in both ends of the fragments, enables detection of chimeric formation andhence, avoiding false typing in the data set. In the second paper, a FACS-machine is used to sort and enrich target DNA covered emPCR beads. This is facilitated by tagging quality beads using hybridization of afluorescently labeled target specific DNA probe prior to sorting. The system wasevaluated by sequencing two amplicon libraries, one FACS sorted and one standardenriched, on the 454 showing a three-fold increase of quality data obtained. / QC20100907
9

Epidemiology and genotyping of Methicillin-resistant Staphylococcus aureus with amplicon-based Nanopore-sequencing : Creating a panel of clinically relevant genes

Koivistoinen Jonsson, Max January 2023 (has links)
Methicillin-resistant Staphylococcus aureus (MRSA) is a variant of the more common Methicillin-Susceptible Staphylococcus aureus (MSSA), an opportunistic pathogen a portion of the human population carries as normal bacterial flora. When an outbreak of MRSA occurs, it is often important to determine if and how these strains are related to each other. In this report two different types of epidemiological methods were combined (namely Multi-Locus Sequence Typing and staphylococcal protein A-typing), in order to reduce workload, costs and time. A panel of resistance and virulence markers was also added to gather as much information about the culture as possible in a single analysis. To test the viability of the method extracted DNA and heat-treated bacterial cultures of both MRSA and MSSA were amplified with a curated panel of primers. These products were later sequenced with Nanopore’s MinION using the Flongle flow-cell. The method showed promise and worked as intended regarding the staphylococcal protein A-typing and the panel of resistance and virulence markers. However, the Multi-Locus Sequence Typing did still require optimization in order to be used clinically. In summary the project can be viewed as a success since it succeeded in being more time, cost and work efficient than many of its predecessors, when the problems with the Multi-Locus Sequence Typing are solved.
10

Study of Subterranean Termite Gut Symbionts as Affected by Chitosan Treatment of Wood

Telmadarrehei, Telmah 03 May 2019 (has links)
The overall aim of this study was to investigate the potential influence of chitosan, a biodegradable and antimicrobial compound, on termite hindgut symbionts. For this purpose, a morphological quantifying technique was conducted on the protist community’s hindgut after feeding termites on chitosan-treated wood. The aim was to characterize the diversity of protist species in the economically important dark southern subterranean termite, Reticulitermes virginicus. A molecular phylogenetic analysis of the V3 and V4 hyper-variable regions of 16S ribosomal RNA (rRNA) gene of the bacterial community in the hindgut of R. virginicus was performed on termites exposed to chitosan treatment. Light microscopy visualization of protist species residing in the hindgut of workers showed presence of ten protist species both in the control sample and in termites fed a low concentration of chitosan. In this study, the coexistence of two species of the genus Trichonympha (T. agilis and T. burlesquei) is reported for the first time in R. virginicus. Monocercomonas sp. and Trichomitus trypanoides were the only two protists found in termites exposed to wood treated with higher chitosan concentration solutions and the absence of wood fragments in their food vacuoles was clear. This feature indicates that these two protists may not be involved in the digestion of the wood fragments impregnated with chitosan. The results of this study indicated that the potential effect of chitosan caused elimination of the protist species in termite hindguts. The genomic DNA of bacterial hindgut community of R. virginicus were profiled using sequences which amplified theV3-V4 sub-regions of 16S rRNA gene. Sequences were analyzed using a taxonomic analysis tool, Quantitative Insights Into Microbial Ecology (OIIME 2), in order to infer the effect of chitosan on the composition of the bacterial fauna in the hindgut. The richness and evenness results indicated that the most diversity was observed in the bacteria from termites not being exposed (UNX) to treatment compared to other treatment groups. On the other hand, the lowest richness and evenness were determined for chitosan-treated wood (CTE) and starved termites (STV). Of 28 bacterial phyla, Bacteroidetes, Firmicutes, Elusimicrobia, and Proteobacteria were the most dominant phyla across all the treatment groups. The results suggest that chitosan treated wood led to the microbial community shifts in R. virginicus. In addition, lack of a nutrition source and other changes in termite’s food affect the termite hindgut bacterial diversity.

Page generated in 0.0974 seconds