• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 30
  • 21
  • 11
  • 11
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of the role of engulfment adaptor protein 1 (GULP1) in amyloid precursor protein (APP) processing. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Chiu, Wai Yin Vivien. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 151-162). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
12

Intracellular dynamics of Alzheimer disease-related proteins /

Selivanova, Alexandra, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
13

Some studies on the cholinergic and somatostatinergic systems in the brain of mouse alzheimer models with transgenes for amyloid precursorprotein (APP) and presenilin

許瑰蓮, Xu, Guilian. January 2000 (has links)
published_or_final_version / Physiology / Doctoral / Doctor of Philosophy
14

Investigating the role of ubiquitin in endosomal sorting and processing of amyloid precursor protein

Williamson, Rebecca Lynn January 2017 (has links)
Amyloid plaques, a neuropathological hallmark of Alzheimer’s disease (AD), are largely composed of amyloid beta (Aβ) peptide, derived from cleavage of amyloid precursor protein (APP) by β- and γ-secretase. The endosome is increasingly recognized as an important crossroads for APP and the secretases, with major implications for APP processing and amyloidogenesis. Amongst various posttranslational modifications affecting APP, ubiquitination of cytodomain lysines may represent a key signal controlling endosomal sorting. Here, we show that substitution of APP COOH-terminal lysines with arginines disrupts APP ubiquitination, though the pool of ubiquitinated APP is small or transient. Nonetheless, this small deficiency in ubiquitination can have a significant impact on APP, such that the number of lysines mutated trends toward an increase in APP metabolism. An APP mutant lacking all COOH-terminal lysines undergoes the most pronounced increase in processing, leading to accumulation of both secreted and intracellular Aβ40, without change in Aβ42. This phenotype is abolished by artificial ubiquitination of APP using rapalog-mediated proximity inducers. Lack of APP COOH-terminal lysines does not affect APP endocytosis, but leads to a redistribution of APP from endosomal intraluminal vesicles (ILVs) to the endosomal limiting membrane, with subsequent decrease in APP COOH-terminal fragment (CTF) content of secreted exosomes, but minimal effects on APP lysosomal degradation. Both the secreted and intracellular increase in Aβ40 is abolished by depletion of presenilin 2 (PSEN2), recently shown to be enriched on the endosomal limiting membrane compared to presenilin 1 (PSEN1). In a separate set of studies, we found that a familial AD mutant, L723P, which occurs immediately next to a string of three lysines in the juxtamembrane region, behaves more similarly to other FAD-causing mutations. APP L723P exhibits a selective increase in Aβ42, and a delay in degradation, but no change in exosomal content, despite some missorting to the endosomal limiting membrane. Our findings demonstrate that ubiquitin can act as a signal for endosomal sorting at five lysines in the APP cytodomain, disruption of which prevents sequestration of APP in ILVs and results in the processing of a larger pool of APP-CTF by PSEN2 on the endosomal membrane.
15

Secreted amyloid precursor protein-alpha modulates hippocampal long-term potentiation, in vivo

Taylor, Chanel Jayne, n/a January 2008 (has links)
Alzheimer�s disease (AD) is a neurodegenerative disorder, charaeterised by progressive loss of memory. It is important to understand what factors initiate the onset of AD so that effective therapeutic treatments can be developed to target the precise mechanisms that initiate this disease. Currently, synaptic dysfunction is widely believed to be the first significant alteration preceding the onset of AD, and is thought to be initiated by an intracellular accumulation of amyloid-β (Aβ), or a free radical-induced increase of oxidative stress. As Aβ levels rise during the onset of AD, a concomitant reduction of secreted amyloid precursor protein-α (sAPPα) is observed, as the two proteins exist in equilibrium. Intriguingly, the neuroprotective and neurotrophic properties of sAPPα indicate that it is intimately involved in the physiological pathways of the major hypotheses for the cause of AD, and may also be involved in the mechanisms that underlie learning and memory. Therefore, it is possible that during the onset of AD, the decrease of sAPPα may contribute to synaptic dysfunction by disrupting the mechanisms of synaptic plasticity. Long-term potentiation (LTP) is the leading experimental model for investigating the neural substrate of memory formation, and describes the molecular mechanisms that underlie an increase in the strength of synaptic transmission. The role sAPPα may play in the induction and maintenance of LTP has not previously been addressed in vivo. Therefore, the aim of this thesis was to investigate whether sAPPα affects the induction of LTP in the hippocampus of the anaesthetised rat. The present findings are the first to suggest that sAPPα may modulate the induction of LTP in vivo. Decreasing the function of endogenous sAPPα (with sAPPα-binding antibodies and a pharmacological inhibition of α-secretase) significantly reduced the magnitude of LTP induced in the dentate gyrus. Therefore, the reduction of sAPPα during AD is likely to have a detrimental impact on the mechanisms of synaptic plasticity, and by extension, learning and memory. The present investigation has also found that the application of recombinant, purified sAPPα to the rat hippocampus has an �inverted U-shaped� dose-response effect on the magnitude of LTP. Low concentrations of sAPPα significantly enhanced LTP, supporting previous findings that exogenous sAPPα can facilitate in vitro LTP and enhance memory performance in animals. On the other hand, comparatively high concentrations of sAPPα significantly decreased the magnitude of LTP. This observation is also consistent with previous findings, in which high concentrations of sAPPα have been shown to be less synaptogenic and memory enhancing than lower doses. These results are the first to suggest that sAPPα modulates in vivo synaptic plasticity, and have important implications for the development of strategies to treat AD.
16

Some studies on the cholinergic and somatostatinergic systems in the brain of mouse alzheimer models with transgenes for amyloid precursor protein (APP) and presenilin

Xu, Guilian. January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 150-191).
17

The endocytic protein Numb regulates APP metabolism and Notch signaling implications for Alzheimer's disease /

Kyriazis, George A. January 2008 (has links)
Thesis (Ph.D.)--University of Central Florida, 2008. / Adviser: Sic L. Chan. Includes bibliographical references (p. 74-84).
18

MCP-1 and APP involvement in glial differentiation and migration of neuroprogenitor cells

Vrotsos, Emmanuel George. January 2009 (has links)
Thesis (Ph.D.)--University of Central Florida, 2009. / Adviser: Kiminobu Sugaya. Includes bibliographical references (p. 45-50).
19

Familial Alzheimer's disease mutations decrease gamma-secretase processing of beta amyloid precurson [sic] protein /

Wiley, Jesse Carey, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 114-145).
20

Secreted amyloid precursor protein-alpha modulates hippocampal long-term potentiation, in vivo

Taylor, Chanel Jayne, n/a January 2008 (has links)
Alzheimer�s disease (AD) is a neurodegenerative disorder, charaeterised by progressive loss of memory. It is important to understand what factors initiate the onset of AD so that effective therapeutic treatments can be developed to target the precise mechanisms that initiate this disease. Currently, synaptic dysfunction is widely believed to be the first significant alteration preceding the onset of AD, and is thought to be initiated by an intracellular accumulation of amyloid-β (Aβ), or a free radical-induced increase of oxidative stress. As Aβ levels rise during the onset of AD, a concomitant reduction of secreted amyloid precursor protein-α (sAPPα) is observed, as the two proteins exist in equilibrium. Intriguingly, the neuroprotective and neurotrophic properties of sAPPα indicate that it is intimately involved in the physiological pathways of the major hypotheses for the cause of AD, and may also be involved in the mechanisms that underlie learning and memory. Therefore, it is possible that during the onset of AD, the decrease of sAPPα may contribute to synaptic dysfunction by disrupting the mechanisms of synaptic plasticity. Long-term potentiation (LTP) is the leading experimental model for investigating the neural substrate of memory formation, and describes the molecular mechanisms that underlie an increase in the strength of synaptic transmission. The role sAPPα may play in the induction and maintenance of LTP has not previously been addressed in vivo. Therefore, the aim of this thesis was to investigate whether sAPPα affects the induction of LTP in the hippocampus of the anaesthetised rat. The present findings are the first to suggest that sAPPα may modulate the induction of LTP in vivo. Decreasing the function of endogenous sAPPα (with sAPPα-binding antibodies and a pharmacological inhibition of α-secretase) significantly reduced the magnitude of LTP induced in the dentate gyrus. Therefore, the reduction of sAPPα during AD is likely to have a detrimental impact on the mechanisms of synaptic plasticity, and by extension, learning and memory. The present investigation has also found that the application of recombinant, purified sAPPα to the rat hippocampus has an �inverted U-shaped� dose-response effect on the magnitude of LTP. Low concentrations of sAPPα significantly enhanced LTP, supporting previous findings that exogenous sAPPα can facilitate in vitro LTP and enhance memory performance in animals. On the other hand, comparatively high concentrations of sAPPα significantly decreased the magnitude of LTP. This observation is also consistent with previous findings, in which high concentrations of sAPPα have been shown to be less synaptogenic and memory enhancing than lower doses. These results are the first to suggest that sAPPα modulates in vivo synaptic plasticity, and have important implications for the development of strategies to treat AD.

Page generated in 0.0575 seconds