• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O uso de redes neurais auto-organizÃveis na anÃlise da transferÃncia de conhecimentos prosÃdico em aprendizes brasileirios de lÃngua inglesa / The use of self-organizing artificial neural networks for the analysis of prosodic knowledge in Brazilian learner of English

Ana Cristina Cunha da Silva 08 October 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / O objetivo desta tese foi investigar como o conhecimento prosÃdico està organizado em um estÃgio inicial de aquisiÃÃo de L2 em aprendizes brasileiros de inglÃs com a ajuda de uma rede neural conexionista. A abordagem proposta neste trabalho consiste primeiramente em "quantificar" as elocuÃÃes dos aprendizes de L2 na forma de coeficientes LPC e outras caracterÃsticas linguÃsticas/fonÃticas que possam representar o fenÃmeno aqui estudado (TransferÃncia do Conhecimento ProsÃdico do PortuguÃs para o inglÃs). A este processo dÃ-se o nome de "extraÃÃo de caracterÃsticas" da fala (feature extraction), uma importante etapa na abordagem conexionista do processamento da fala. Em segundo lugar, uma vez determinadas as caracterÃsticas do item lexical ou da frase produzida por cada aprendiz, sÃo inseridos esses dados na rede neural a fim de analisar as propriedades (regularidades) estatÃsticas do conjunto de falantes como um todo. Em terceiro, utiliza-se ferramentas de visualizaÃÃo para analisar como a rede organiza os falantes e quais informaÃÃes sÃo mais relevantes para este processo de formaÃÃo de grupos (e.g. nÃvel de proficiÃncia, uma certa caracterÃstica ou propriedade da fala, entre outros). A rede utilizada à conhecida como Mapa Auto-OrganizÃvel (Self-Organizing Map, SOM). A rede SOM organiza os falantes por grau de similaridade em grupos bem definidos (clusters). A aplicaÃÃo da rede SOM neste contexto Ã, portanto, inovadora. A rede SOM à implementada no ambiente Matlab usando o pacote Som toolbox, que à um conjunto de rotinas de programaÃÃo desenvolvidas pelo grupo de pesquisa da FinlÃndia, tambÃm inventores da rede SOM. Os resultados das simulaÃÃes apontam que a rede SOM pode vir a ser usada mais frequentemente para avaliar o grau de distÃncia a que um grupo de aprendizes està do grupo de falantes nativos. Dessa forma, uma rede neural pode vir a ser aplicada como ferramenta no contexto de determinaÃÃo de nÃvel de proficiÃncia em lÃngua estrangeira. / The objective of this dissertation was to investigate how the prosodic knowledge is organized in an early stage of L2 acquisition in Brazilian learners of English with the help of a connectionist neural network. The approach proposed in this research is first, to quantify the utterances of L2 learners in the form of LPC coefficients and other linguistic/phonetics features that can represent the phenomenon studied here (Transfer of the prosodic knowledge from Portuguese to English). This process is called speech feature extraction, an important step in the connectionist approach to speech processing. Second, since certain features of the lexical item or sentence produced by each learner are determined, these data are entered into the neural network to analyze the statistical properties (regularities) of the set of speakers as a whole. Third, visualization tools are used to analyze how the network organizes speakers and what information is most relevant to this process of group formation (e.g. proficiency level, a certain characteristic or property of speech, among others). The network is known as Self-Organizing Map (Self-Organizing Map, SOM). The SOM organizes speakers for similarity degree in well-defined groups (clusters). Application of SOM in this context is therefore innovative. The SOM network is implemented in Matlab environment using the SOMtoolbox package, which is a set of programming routines developed by the research group in Finland, also the inventors of the SOM. The simulation results indicate that SOM might be used more frequently to assess the degree of distance that a group of learners is to the group of native speakers. Thus, a neural network might be used as a tool in the context of determining the level of foreign language proficiency.

Page generated in 0.0483 seconds