Spelling suggestions: "subject:"anéis dde grupo"" "subject:"anéis dee grupo""
11 |
Códigos cíclicos sobre anéis de cadeia / Cyclic codes over chain ringsAnderson Tiago da Silva 05 March 2012 (has links)
Neste trabalho, usamos uma abordagem de anéis de grupo para caracterizar códigos cíclicos sobre anéis de cadeia, seus duais e algumas condições sobre códigos auto-duais. Caracterizamos também os códigos cíclicos livres sobre anéis de cadeia e por fim exibimos uma fórmula para o peso de qualquer código cíclico sobre anéis de cadeia de comprimento e p^n 2p^n. / In this thesis, we use an approach of group rings to characterize cyclic codes over chain rings, their duals and some conditions on self-dual codes. It also features free cyclic codes over chain rings and finally we show a formula for the weight of any cyclic code over chain rings of length p^n and 2p^n.
|
12 |
Códigos de peso constante / One weight codesNascimento, Ruth 09 June 2014 (has links)
Sejam F_q um corpo finito com q elementos, e C_n um grupo cíclico de n elementos com mdc(q,n) = 1. Iniciamos nosso trabalho inspirados nos resultados de Vega, estabelecendo condições para que um código de F_qC_n tenha peso constante. Com tal resultado concluímos que um código de peso constante em F_qC_n é da forma {rg^ie | r em F_q, i variando de 0 a n}. A partir disto, determinamos a quantidade de códigos de peso constante de F_qC_n, e construímos exemplos de códigos de dois pesos em F_q(C_n X C_n). Em seguida, estabelecemos sob quais condições um código em F_qA, para A um grupo abeliano finito, tem peso constante. Analisamos também os códigos de peso constante em RG, quando R um anel de cadeia finito e C_n é um grupo cíclico de n elementos com mdc(n,q) = 1. Além disso, analisamos o caso em que os elementos de um ideal de RA, para R um domínio de integridade infinito e A um grupo abeliano finito têm peso constante. / Let F_q be a field with q elements, C_n be a cyclic group of order n and suppose that gcd(q,n) = 1. In this work conditions are given to ensure that a code in F_qC_n is a one weight code, inspired in the work of Vega. As a consequence of this result we showed that a one weight code in F_qC_n is of the form {rg^ie | r in F_q, i between 0 and n}. With this, we determined the number of one weight codes in F_qC_n, and constructed examples of two weight codes in F_q(C_n X C_n). After this, we gave conditions to ensure that a code had constant weight in F_qA, for A a finite abelian group. We also analyzed the one weight codes in RG, R a chain ring and C_n a cyclic group with n elements with gcd(n,q) = 1. Moreover, we analyzed the case when the elements of an ideal in RA, for R an infinite integral domain and A a finite abelian group, have constant weight.
|
13 |
Códigos de peso constante / One weight codesRuth Nascimento 09 June 2014 (has links)
Sejam F_q um corpo finito com q elementos, e C_n um grupo cíclico de n elementos com mdc(q,n) = 1. Iniciamos nosso trabalho inspirados nos resultados de Vega, estabelecendo condições para que um código de F_qC_n tenha peso constante. Com tal resultado concluímos que um código de peso constante em F_qC_n é da forma {rg^ie | r em F_q, i variando de 0 a n}. A partir disto, determinamos a quantidade de códigos de peso constante de F_qC_n, e construímos exemplos de códigos de dois pesos em F_q(C_n X C_n). Em seguida, estabelecemos sob quais condições um código em F_qA, para A um grupo abeliano finito, tem peso constante. Analisamos também os códigos de peso constante em RG, quando R um anel de cadeia finito e C_n é um grupo cíclico de n elementos com mdc(n,q) = 1. Além disso, analisamos o caso em que os elementos de um ideal de RA, para R um domínio de integridade infinito e A um grupo abeliano finito têm peso constante. / Let F_q be a field with q elements, C_n be a cyclic group of order n and suppose that gcd(q,n) = 1. In this work conditions are given to ensure that a code in F_qC_n is a one weight code, inspired in the work of Vega. As a consequence of this result we showed that a one weight code in F_qC_n is of the form {rg^ie | r in F_q, i between 0 and n}. With this, we determined the number of one weight codes in F_qC_n, and constructed examples of two weight codes in F_q(C_n X C_n). After this, we gave conditions to ensure that a code had constant weight in F_qA, for A a finite abelian group. We also analyzed the one weight codes in RG, R a chain ring and C_n a cyclic group with n elements with gcd(n,q) = 1. Moreover, we analyzed the case when the elements of an ideal in RA, for R an infinite integral domain and A a finite abelian group, have constant weight.
|
Page generated in 0.0555 seconds