• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 143
  • 45
  • 25
  • 12
  • 8
  • 8
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 588
  • 588
  • 177
  • 143
  • 116
  • 115
  • 113
  • 92
  • 89
  • 82
  • 77
  • 70
  • 68
  • 60
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Biogas Production Plant at Umeå Dairy — Evaluation of Design and Start-up

Asplund, Stina January 2005 (has links)
<p>As a part of a large project at Norrmejerier, a biogas production plant has been constructed at Umeå Dairy. In this plant wastewater, residual milk and whey are decomposed and biogas is produced. The biogas is burned in a steam boiler. The biogas plant is designed as an anaerobic contact process, with sludge separation and recirculation by a clarifier. The fat in the substrate is treated in a separate reactor.</p><p>The purpose of this study is to evaluate the design and start-up of this biogas production plant. Further, the interaction with the contractor responsible for construction and start-up is evaluated.</p><p>The plant is generally well designed, the process conditions are suitable and the objectives are realistic. However, the seed sludge is unsuitable and the time plan is too optimistic.</p><p>At the end of the period of this study, the plant was running and all central components are performing as intended. Still, the objectives have not been reached. This is mainly attributed to the poor quality of the seed sludge.</p><p>The management of the plant and the interaction with the contractor has generally been good. Most problems that arose were of typical start-up nature. Others were due to insufficient planning or lack of communication. Further, several design flaws were identified during start-up.</p><p>Washout of sludge has been one of the most significant drawbacks during start-up. This inconvenience seems to be the result of improper seed sludge and a too hasty increase of the organic loading rate.</p> / <p>Norrmejerier har som en del av ett större projekt låtit uppföra en anläggning för biogasproduktion vid Umeå mejeri. I anläggningen, som är utformad som en anaerob kontaktprocess, behandlas avloppsvattnen och andra organiska restprodukter från mejeriet tillsammans med vassle från både Umeå och Burträsk mejeri. Fettet i substratet avskiljs och behandlas separat. Den biogas som produceras vid nedbrytningen av det organiska materialet bränns i en brännare och ånga produceras.</p><p>Syftet med den här studien är att utvärdera anläggningens design, valda processförhållanden och förfarandet under uppstarten av biogasanläggningen. Dessutom utvärderas interaktionen med den tyska entreprenör som är ansvarig för konstruktion och uppstart.</p><p>Anläggningens utformning och valda processbetingelser är passande och de uppsatta målen är rimliga. Däremot är valet av ymp olämpligt och tidsplanen för uppstarten är för optimistisk.</p><p>När denna studie avslutades var anläggningen i bruk och biogas producerades. Alla de mål för som formulerats hade dock inte uppnåtts. Ympens dåliga kvalitet är den mest bidragande orsaken till att uppstartsperioden har blivit förlängd.</p><p>Arbetet under uppstarten och samarbetet med entreprenören har generellt sett varit lyckat. Man har dock stött på många komplikationer, varav de flesta har varit av typisk uppstartsnatur. Andra har varit resultatet av bristande planering och kommunikation. En rad konstruktions- och designfel har också identifierats under uppstarten.</p><p>Slamflykt från reaktorerna har varit det mest betydande problemet hos den biologiska processen. Denna förlust av slam förmodas bero på olämpligt val av ymp och en alltför hastig ökning av den organiska belastningen i reaktorerna under uppstarten.</p>
62

Evaluation of emergent macrophytes as a source forbiogas production after mechanical, alkaline and fungalpretreatments.

Alvinge, Simon January 2010 (has links)
<p>Two species of emergent macrophytes, Typha latifolia (common cattail) and Phalaris arundinacea (reed canary grass) were evaluated as substrates for biogas production. The specific methane yield for each plant was obtained by batch wise anaerobic digestion in 300-mL bottles. Three different pretreatments were evaluated for increased biogas production; mechanical milling, alkaline treatment with lime and fungal degradation with Pleurotus ostreatus (oyseter mushroom).The methane yield for Typha latifolia and Phalaris arundinacea was determined to 300 and 323mL methane per g VS, respectively. There was no statistical difference in methane yield between the two species. Milling pretreatment increased the biogas yield with 16 % by average compared to untreated plant. Alkaline pretreatment with lime increased the biogas yield with 27 % at roomtemp. and 22 % at 55 °C. The fungal pretreatment decreased the biogas production by 20 % and is probably not suitable for this kind of substrate.The results showed that emergent macrophytes have a biogas yield similar to other plants already tested (grasses) and commonly used (pasture crops) in large scale reactors. However, emergent macrophytes and grasses cause mechanical problems in a reactor due to their structure. Probably some kind of milling must be done to decrease the fiber length of the emergent macrophytes. The costs for harvest, transport, handling and possible pretreatment of the emergent macrophytes have to be estimated and included in the overall cost calculations. This can tell if emergent macrophytes should be used as a substrate for biogas production.</p>
63

Greenalgae as a substrate for biogas production - cultivation and biogas potentials

Liu, Yang January 2010 (has links)
<p>Algae is regarded as a good potential substrate for biogas production, due to high cells productivity, low cellulose and zero lignin content. Two parts were included in this study: first, cultivations of micro-algae (<em>Chlorella sorokiniana</em> and <em>Tetraselmis suecica</em>) at two different nitrate concentrations, also the effect of addition of CO<sub>2</sub> on algae grow was investigated in this first part. Second, batch fermentations of the cultivated micro-algae as well as a powder <em>Chlorella</em> (obtained from Raw Food Shop) and a dry mix filamentous algae (collected in the pounds in the park at the back of the Tema-building and then dried) were performed. In this part also effects of thermo-lime pretreatment (room temperature, 80<sup>o</sup>C, 105<sup>o</sup>C and 120<sup>o</sup>C) on the algae biogas potentials was investigated.</p><p> </p><p>Both strains of micro-algae cultured at low nitrate gave more CH<sub>4</sub> yield: 319 (±26) mL and 258 (±12) mL CH<sub>4 </sub>per added gVS was obtained during the degradation of <em>Chlorella sorokiniana </em>grown at 0.4mM-N and 2mM-N level, respectively. For<em> Tetraselmis suecica</em> 337 (±37) mL and 236 (±20) mL CH<sub>4</sub> per added gVS was obtained at 2.4mM-N and 12mM-N level, respectively. Powder <em>Chlorella</em> gave the highest biogas production (719 ±53 mL/added gVS) and CH<sub>4</sub> yields (392 ±14 mL/added gVS), followed by the dry filamentou<em>s</em> algae (661 ±20 mL biogas and 295 ±9 mL CH<sub>4</sub> per added gVS) and <em>Tetraselmis suecica</em> (12 mM-N; 584 ±7 mL biogas and 295 ±9 mL CH<sub>4</sub> per added gVS).</p><p> </p><p>A negative effect of lime treatment at room temperature on CH<sub>4</sub> yield of algal biomass was obtained. Lime treatment at 120<sup>o</sup>C showed the fastest degradation rate for <em>Tetraselmis</em> <em>suecica </em>and powder <em>Chlorella</em> during the initial 5 days of incubation.  </p><p> </p><p><em>Chlorella sorokiniana</em> and <em>Tetraselmis suecica</em> cultures flushed with biogas containing 70% and also CO<sub>2</sub> enriched air (5% CO<sub>2</sub>) did not increase cells growth (measured as OD<sub>600</sub>) if compared to references grown under air. On the contrary, a clearly inhibition effect on the algal cells growth was observed in some cultures.</p>
64

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor

Wilkinson, Andrea 10 June 2011 (has links)
Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected from AD of CTS at mesophilic temperatures in batch and by down-flow fixed film reactor. Experiments conducted include a series of biochemical methane potential (BMP) assays that investigated the digestion of CTS as the sole carbon source at a variety of food-to- microorganism ratios with and without acclimated biomass, under co-digestion conditions and also with the addition of supplemental nutrients. Additional BMP assays were conducted which investigated the potential to reduce fresh water consumption by using of digested effluent for substrate dilution. Continuous studies employed two 28L down-flow stationary fixed film reactors to examine. Chemical oxygen demand and volatile solids removal efficiencies greater than 85% were achieved up to an organic loading rate of 7.4 g TCOD/L/d and hydraulic retention time of 5 days.
65

The Sustainability of Decentralized Bioenergy Production : Case Study: The 'Bioenergy Village' Bollewick

Michel, Johannes January 2012 (has links)
The concept of Sustainable Development is an interdisciplinary science. Transcending various academic fields the concept shows paths how the needs of present and future generations can be met through economic development on a finite natural resource base. Global warming and rising sea levels are just two of a series of phenomena that are directly attributable to human-induced increasing greenhouse gas levels in the atmosphere as consequence of the combustion of fossil fuels. Therefore, reducing greenhouse gas emissions through the use of renewable resources such as bioenergy are of vital importance if detrimental environmental effects are to be mitigated. The production of biogas in a decentralized context is receiving much attention in Germany as a means to reduce greenhouse gases and to counteract correlated negative environmental effects, respectively. In addition, socio-economic benefits such as local employment creation have the potential to empower rural communities. Subsidised by the German Renewable Sources Act and its various remuneration schemes, two 500kWel CHP biogas plants are producing through anaerobic digestion of maize silage and manure electricity and heat in the East German village Bollewick, which is the case study. The sustainability of this decentralized system is analyzed by applying a set of indicators. Socio-economic benefits for the population, economic efficiency of the digestion process and impacts of substrate costs on the profitability, greenhouse gas emissions due to land use change and biodiversity loss being some of these indicators. The thesis concludes that none of the sustainability indicators are sufficiently fulfilled in Bollewick. Especially the cultivation of the energy crop maize has despite crop rotations immense negative environmental effects. Therefore, the decentralized biogas production in the rurally coined village Bollewick is not sustainable.
66

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor

Wilkinson, Andrea 10 June 2011 (has links)
Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected from AD of CTS at mesophilic temperatures in batch and by down-flow fixed film reactor. Experiments conducted include a series of biochemical methane potential (BMP) assays that investigated the digestion of CTS as the sole carbon source at a variety of food-to- microorganism ratios with and without acclimated biomass, under co-digestion conditions and also with the addition of supplemental nutrients. Additional BMP assays were conducted which investigated the potential to reduce fresh water consumption by using of digested effluent for substrate dilution. Continuous studies employed two 28L down-flow stationary fixed film reactors to examine. Chemical oxygen demand and volatile solids removal efficiencies greater than 85% were achieved up to an organic loading rate of 7.4 g TCOD/L/d and hydraulic retention time of 5 days.
67

Characterization of Pretreatment Impacts on Properties of Waste Activated Sludge and Digestibility

Kianmehr, Peiman January 2010 (has links)
Technologies for pretreatment of waste activated sludges (WAS) prior to digestion are of increasing interest to wastewater treatment utilities because of their promise for improving sludge digestibility and reducing the mass of biosolids remaining after digestion. While there has been considerable study of pretreatment processes, a common approach to describing the impact of pretreatments on sludge biodegradability has not been developed. The overall objective of this study was to develop protocols that can be employed to characterize the impact of pretreatment processes on WAS digestion. Sonication and ozonation were employed as models of physical and chemical pretreatment technologies respectively. A range of physical, chemical and biological responses were evaluated to assess the impact of pretreatment on WAS properties as well as digestibility. WAS samples that were generated over a range of solids residence times (SRTs) under controlled operating conditions were employed to facilitate an assessment of the interaction between pretreatment and WAS properties on digestibility. The VS, COD and soluble TKN responses indicated that a significant fraction of the WAS solids were solublized by sonication and ozonation, however, it appeared that the types of materials which were solublized was affected by the SRT at which the WAS was generated and the level of pretreatment. The results indicated that the impact of pretreatment on biodegradability of WAS was not described by solublization values exclusively without considering the SRT of the sludge and the level and type of pretreatment. A higher level of proteinaceous materials was preferentially solublized as the result of pretreatment. Respirometry revealed that both sonication and ozonation substantially reduced the viable heterotrophs in the sludge and modestly increased the readily biodegradable fraction of COD. The ultimate yields of CH4 and NH4 in BMP tests and VFAs in BAP tests revealed that pretreatment marginally increased the ultimate digestibility of the sludges. Only a high dose of ozonation substantially increased the digestibility of the 15 day SRT sludge. However, both sonication and ozonation substantially increased the rate of hydrolysis which is typically the rate limiting process in WAS digestion. The BMP test was not a useful test to evaluate the rate of methane generation due to inhibition of methanogens in the early days of BMP test for pretreated sludges. The comparison between VFA and ammonia responses in day 10 of BAP test and ultimate values of these responses after 60 days in BMP test revealed linear relationships between these responses. According to these relationships, a set of models were introduced in this study. The models can be employed to predict the ultimate methane and ammonia generation using soluble COD, VFA or ammonia responses in day 10 of BAP tests. The BAP test was determined to be a shorter test (10 days) than the BMP (55 to 60 days) test and could provide information on the rates of hydrolysis and acidification/ammonification processes. Characterization of biodegradable and non-biodegradable material in WAS samples was conducted using a simplified ADM1 model. The characterization also revealed that proteins are a substantial fraction of biodegradable materials. The estimated ammonia, VFA and methane values from the stoichiometric model were similar to the corresponding values from the experiments. This supported the validity of the simplified model for all sludges employed in this study.
68

Enzymatic treatement of wastewater sludge in presence of a cation binding agent : improved solubilisation and increased methane production

Beijer, Ronja January 2008 (has links)
Stockholm Water is a water and sewage company with Henriksdal as one of two wastewater treatment plants (WWTPs). At Henriksdal wastewater sludge generated in the wastewater treatment process is digested which generate biogas; a mixture of mainly methane and carbon dioxide. If purified to methane content of 96 - 98 % this gas is called biomethane. Biogasmax is a project aiming to reduce the use of fossile fuels in Europe by providing that biogas is a good technical, economical and environmental alternative as vehicle fuel. The specific aim for Stockholm Water is to increase the biogas production at the existing plant in Henriksdal. Enzymatic treatment of wastewater sludge is an innovative technique earlier proofed to increase the biogas production from wastewater sludge with up to 60 %. The enzyme activity is in turn proven to significantly increase in the presence of a cation binding agent. One aim with this thesis was to investigate if the sludge from Henriksdal wastewater treatment process at all is affected of enzymatic treatment in presence of a cation binding agent since this has shown to have some significance. The chemical oxygen demand (COD) was measured in the liquid phase of sludge after treatment and used as a measurement of treatment effect. Another aim of this thesis was to look into the possibility to increase the methane production from sludge at Henriksdal WWTP. This was investigated through batch laboratory digestion tests. The sludge from Henriksdal WWTP was shown to be a good substrate for the enzymes added. COD in the liquid phase was increased with 17 – 32 % depending on the dose of enzymes and sodium citrate added. Digestion of sludge with a total addition of 18.6 mg enzymes per 1 g total solids (TS) and a concentration of 5 mM sodium citrate increased the methane production with almost 18 % compared to untreated sludge. This equals an increase of 18.3 % when converted to represent a totally blended and continuous digestion chamber at Henriksdal WWTP. The increased methane production also results in a sludge reduction out from the digestion chambers. The increased methane production and sludge reduction though does not fulfil the increased costs for the enzymes and sodium citrate applied. These doses must be decreased and the costs for both enzymes and sodium citrate must be reduced for this technique to be economically feasible in a full scale operation.
69

Different Pretreatments to Enhance Biogas Production : A comparison of thermal, chemical and ultrasonic methods

Wang, Liqian January 2011 (has links)
No description available.
70

Mechanism of zeolite activity in biogas co-digestion

Hansson, Anna January 2011 (has links)
Biogas is a source of renewable energy and is produced at anaerobic conditions. The gas consists mainly of methane (55-70 %) and carbon dioxide (30-45 %). Biogas can be used as vehicle fuel after the gas has been upgraded to a methane content of approximately 97 %. There are several companies in Sweden producing biogas. Svensk biogas AB in Linköping is one of the largest. The company has two biogas production plants; one in Linköping and one in Norrköping. To meet the surge demand for biogas it is not only important to increase the volumetric capacity of the digesters, but also to optimize the process at the existing production plants in different ways. Zeolites, a clay mineral, have earlier been shown to have a positive effect on anaerobic digestion of certain substrates. The aim of this master’s thesis was to investigate if the organic loading rate could be increased and/or if the hydraulic retention time could be reduced by addition of zeolites to a reactor treating slaughterhouse waste as a substrate. The aim was further to investigate which substance/substances that zeolites possibly could affect. Addition of the zeolite clinoptilolite in a continuously stirred lab tank reactor showed a significantly lower accumulation of volatile fatty acids compared to that in a control reactor without zeolites added, when the hydraulic retention time was kept low (30 days) and the organic loading rate was high (4.8 kg VS/ (m3 × day)). The same results were observed upon zeolite addition in a batch experiment, which also showed a decreased lag phase. Neither the specific gas production nor the methane concentration was significantly affected by addition of zeolites. Furthermore, addition of a possible inhibitor, long-chain fatty acids (LCFA), increased the lag phase further when slaughterhouse waste was used as a substrate. The conclusion from the observed results is that a metabolite or metabolites produced during the anaerobic degradation is/are the reason to inhibition and an increased lag phase.

Page generated in 0.1 seconds