• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nyquist-Rate Switched-Capacitor Analog-to-Digital Converters

Larsson, Andreas 1978- 14 March 2013 (has links)
The miniaturization and digitization of modern microelectronic systems have made Analog-to-Digital converters (ADC) key building components in many applications. Internet and entertainment technologies demand higher and higher performance from the hardware components in many communication and multimedia systems, but at the same time increased mobility demands less and less power consumption. Many applications, such as instrumentation, video, radar and communications, require very high accuracy and speed and with resolutions up to 16 bits and sampling rates in the 100s of MHz, pipelined ADCs are very suitable for such purposes. Resolutions above 10 bits often require very high power consumption and silicon area if no error correction technique is employed. Calibration relaxes the accuracy requirement of the individual building blocks of the ADC and enables power and area savings. Digital calibration is preferred over analog calibration due to higher robustness and accuracy. Furthermore, the microprocessors that process the digital information from the ADCs have constantly reduced cost and power consumption and improved performance due to technology scaling and innovative microprocessor architectures. The work in this dissertation presents a novel digital background calibration technique for high-speed, high-resolution pipelined ADCs. The technique is implemented in a 14 bit, 100 MS/s pipelined ADC fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.13µm Complementary Metal Oxide Semiconductor (CMOS) digital technology. The prototype ADC achieves better than 11.5 bits linearity at 100 MS/s and achieves a best-in-class figure of merit of 360 fJ/conversion-step. The core ADC has a power consumption of 105 mW and occupies an active area of 1.25 mm^2. The work in this dissertation also presents a low-power, 8-bit algorithmic ADC. This ADC reduces power consumption at system level by minimizing voltage reference generation and ADC input capacitance. This ADC is implemented in International Business Machines Corporation (IBM) 90nm digital CMOS technology and achieves around 7.5 bits linearity at 0.25 MS/s with a power consumption of 300 µW and an active area of 0.27 mm^2.
2

Architecture, Modeling, and Analysis of a Plasma Impedance Probe

Jayaram, Magathi 01 December 2010 (has links)
Variations in ionospheric plasma density can cause large amplitude and phase changes in the radio waves passing through this region. Ionospheric weather can have detrimental effects on several communication systems, including radars, navigation systems such as the Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating models of the ionospheric density is of paramount interest to scientists working in the field of satellite communication. Numerous empirical and theoretical models have been developed to study the upper atmosphere climatology and weather. Multiple measurements of plasma density over a region are of marked importance while creating these models. The lack of spatially distributed observations in the upper atmosphere is currently a major limitation in space weather research. A constellation of CubeSat platforms would be ideal to take such distributed measurements. The use of miniaturized instruments that can be accommodated on small satellites, such as CubeSats, would be key to acheiving these science goals for space weather. The accepted instrumentation techniques for measuring the electron density are the Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are able to provide higher resolution measurements of relative electron density, the Plasma Impedance Probes provide absolute electron density measurements irrespective of spacecraft charging. The central goal of this dissertation is to develop an integrated architecture for the PIP that will enable space weather research from CubeSat platforms. The proposed PIP chip integrates all of the major analog and mixed-signal components needed to perform swept-frequency impedance measurements. The design's primary innovation is the integration of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip Field-Programmable Gate Array (FPGA) to compute the probes impedance. This provides a robust solution for determining the plasma impedance accurately. The major analog errors and parametric variations affecting the PIP instrument and its effect on the accuracy and precision of the impedance measurement are also studied. The system clock is optimized in order to have a high performance ADC. In this research, an alternative clock generation scheme using C-elements is described to reduce the timing jitter and reference spurs in phase locked loops. While the jitter performance and reference spur reduction is comparable with prior state-of-the-art work, the proposed Phase Locked Loop (PLL) consumes less power with smaller area than previous designs.
3

Modelling and Analysis of Substrate Noise in Delta Sigma ADCs

Darda, Abu January 2017 (has links)
The rapid development in the semiconductors industry has enabled the placement of multiple chips on a single die. This has helped boost the functionality of modernday application specific integrated circuits (ASICs). Thus, digital circuits are being increasingly placed along-side analog and RF circuits in what are known as mixed signal circuits. As a result, the noise couplings through the substrate now have an increased role in mixed-signal ASIC design. Therefore, there is a need to study the effects of substrate noise and include them in the traditional design methodology. ∆Σ analog-to-digital converters (ADCs) are a perfect example of digital integration in traditionally analog circuits. ADCs, used to interface digital circuits to an analog world, are indispensable in mixed-signal systems and therefore set an interesting case study. A ∆Σ ADC is used in this thesis to study the effects of substrate noise. A background study is presented in the thesis to better understand ∆Σ modulators and substrate couplings. An intensive theoretical background on generation, propagation and reception of substrate noise is presented in light of existing researches. System and behavioural level models are proposed to include the effects of substrate noise in the design stages. A maximum decay of 10dB is seen due to injection of substrate noise system level simulations while a decay of 12dB is seen in behavioural simulations. A solution is proposed using controlled clock tree delays to overcome the effects of substrate noise. The solution is verified on both the system and behavioural levels. The noise models used to drive the studies can further be used in mixed-signal systems to design custom solutions. / Den snabba utvecklingen inom halvledarindustrin har möjliggjort placering av flera marker på en enda dö. Detta har hjälpt till att öka funktionaliteten hos moderna applikationsspecifika integrerade kretsar. Sålunda placeras digitala kretsar i allt högre grad parallella och RF-kretsar i de så kallade blandade signalkretsarna. Som ett resultat har bullerkopplingarna genom substratet nu en ökad roll i ASICdesign med blandad signal. Därför finns det behov av att studera effekterna av substratbuller och inkludera dem i den traditionella designmetoden. ∆Σ analog-till-digital omvandlare är ett perfekt exempel på digital integration i traditionellt analoga kretsar. ADC, som används för att gränssnitta digitala kretsar till en analog värld, är oumbärliga i blandningssignalsystem och är därför en intressant fallstudie. A ∆Σ arkitektur används i denna avhandling för att studera effekterna av substratstörning. En bakgrundsstudie presenteras i avhandlingen för att bättre förstå ∆Σ modulatorer och substratkopplingar. En intensiv teoretisk bakgrund på generering, förökning och mottagande av substratbuller presenteras i ljuset av befintliga undersökningar. Systemoch beteendemodellmodeller föreslås inkludera effekterna av substratbuller i konstruktionsstadiet. Ett maximalt förfall på 10dB ses på grund av injektion av substratbuller på systemnivå medan ett förfall av 12dB ses i beteende simuleringar.En lösning föreslås med hjälp av kontrollerade klockträdfördröjningar för att övervinna effekterna av substratbuller. Lösningen är verifierad på både system och beteendenivåer. De brusmodeller som används för att driva studierna kan vidare användas i blandningssignalsystem för att designa anpassade lösningar.

Page generated in 0.065 seconds