• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Certified Compilation and Worst-Case Execution Time Estimation / Compilation formellement vérifiée et estimation du pire temps d'éxécution

Maroneze, André Oliveira 17 June 2014 (has links)
Les systèmes informatiques critiques - tels que les commandes de vol électroniques et le contrôle des centrales nucléaires - doivent répondre à des exigences strictes en termes de sûreté de fonctionnement. Nous nous intéressons ici à l'application de méthodes formelles - ancrées sur de solides bases mathématiques - pour la vérification du comportement des logiciels critiques. Plus particulièrement, nous spécifions formellement nos algorithmes et nous les prouvons corrects, à l'aide de l'assistant à la preuve Coq - un logiciel qui vérifie mécaniquement la correction des preuves effectuées et qui apporte un degré de confiance très élevé. Nous appliquons ici des méthodes formelles à l'estimation du Temps d'Exécution au Pire Cas (plus connu par son abréviation en anglais, WCET) de programmes C. Le WCET est une propriété importante pour la sûreté de fonctionnement des systèmes critiques, mais son estimation exige des analyses sophistiquées. Pour garantir l'absence d'erreurs lors de ces analyses, nous avons formellement vérifié une méthode d'estimation du WCET fondée sur la combinaison de deux techniques principales: une estimation de bornes de boucles et une estimation du WCET via la méthode IPET (Implicit Path Enumeration Technique). L'estimation de bornes de boucles est elle-même décomposée en trois étapes : un découpage de programmes, une analyse de valeurs opérant par interprétation abstraite, et une méthode de calcul de bornes. Chacune de ces étapes est formellement vérifiée dans un chapitre qui lui est dédiée. Le développement a été intégré au compilateur C formellement vérifié CompCert. Nous prouvons que le résultat de l'estimation est correct et nous évaluons ses performances dans des ensembles de benchmarks de référence dans le domaine. Les contributions de cette thèse incluent la formalisation des techniques utilisées pour estimer le WCET, l'outil d'estimation lui-même (obtenu à partir de la formalisation), et l'évaluation expérimentale des résultats. Nous concluons que le développement fondé sur les méthodes formelles permet d'obtenir des résultats intéressants en termes de précision, mais il exige des précautions particulières pour s'assurer que l'effort de preuve reste maîtrisable. Le développement en parallèle des spécifications et des preuves est essentiel à cette fin. Les travaux futurs incluent la formalisation de modèles de coût matériel, ainsi que le développement d'analyses plus sophistiquées pour augmenter la précision du WCET estimé. / Safety-critical systems - such as electronic flight control systems and nuclear reactor controls - must satisfy strict safety requirements. We are interested here in the application of formal methods - built upon solid mathematical bases - to verify the behavior of safety-critical systems. More specifically, we formally specify our algorithms and then prove them correct using the Coq proof assistant - a program capable of mechanically checking the correctness of our proofs, providing a very high degree of confidence. In this thesis, we apply formal methods to obtain safe Worst-Case Execution Time (WCET) estimations for C programs. The WCET is an important property related to the safety of critical systems, but its estimation requires sophisticated techniques. To guarantee the absence of errors during WCET estimation, we have formally verified a WCET estimation technique based on the combination of two main methods: a loop bound estimation and the WCET estimation via the Implicit Path Enumeration Technique (IPET). The loop bound estimation itself is decomposed in three steps: a program slicing, a value analysis based on abstract interpretation, and a loop bound calculation stage. Each stage has a chapter dedicated to its formal verification. The entire development has been integrated into the formally verified C compiler CompCert. We prove that the final estimation is correct and we evaluate its performances on a set of reference benchmarks. The contributions of this thesis include (a) the formalization of the techniques used to estimate the WCET, (b) the estimation tool itself (obtained from the formalization), and (c) the experimental evaluation. We conclude that our formally verified development obtains interesting results in terms of precision, but it requires special precautions to ensure the proof effort remains manageable. The parallel development of specifications and proofs is essential to this end. Future works include the formalization of hardware cost models, as well as the development of more sophisticated analyses to improve the precision of the estimated WCET.
2

Extraction and traceability of annotations for WCET estimation / Extraction et traçabilité d’annotations pour l’estimation de WCET

Li, Hanbing 09 October 2015 (has links)
Les systèmes temps-réel devenaient omniprésents, et jouent un rôle important dans notre vie quotidienne. Pour les systèmes temps-réel dur, calculer des résultats corrects n’est pas la seule exigence, il doivent de surcroît être produits dans un intervalle de temps borné. Connaître le pire cas de temps d’exécution (WCET - Worst Case Execution Time) est nécessaire, et garantit que le système répond à ses contraintes de temps. Pour obtenir des estimations de WCET précises, des annotations sont nécessaires. Ces annotations sont généralement ajoutées au niveau du code source, tandis que l’analyse de WCET est effectuée au niveau du code binaire. L’optimisation du compilateur est entre ces deux niveaux et a un effet sur la structure du code et annotations. Nous proposons dans cette thèse une infrastructure logicielle de transformation, qui pour chaque optimisation transforme les annotations du code source au code binaire. Cette infrastructure est capable de transformer les annotations sans perte d’information de flot. Nous avons choisi LLVM comme compilateur pour mettre en œuvre notre infrastructure. Et nous avons utilisé les jeux de test Mälardalen, TSVC et gcc-loop pour démontrer l’impact de notre infrastructure sur les optimisations du compilateur et la transformation d’annotations. Les résultats expérimentaux montrent que de nombreuses optimisations peuvent être activées avec notre système. Le nouveau WCET estimé est meilleur (plus faible) que l’original. Nous montrons également que les optimisations du compilateur sont bénéfiques pour les systèmes temps-réel. / Real-time systems have become ubiquitous, and play an important role in our everyday life. For hard real-time systems, computing correct results is not the only requirement. In addition, the worst-case execution times (WCET) are needed, and guarantee that they meet the required timing constraints. For tight WCET estimation, annotations are required. Annotations are usually added at source code level but WCET analysis is performed at binary code level. Compiler optimization is between these two levels and has an effect on the structure of the code and annotations.We propose a transformation framework for each optimization to trace the annotation information from source code level to binary code level. The framework can transform the annotations without loss of flow information. We choose LLVM as the compiler to implement our framework. And we use the Mälardalen, TSVC and gcc-loops benchmarks to demonstrate the impact of our framework on compiler optimizations and annotation transformation. The experimental results show that with our framework, many optimizations can be turned on, and we can still estimate WCET safely. The estimated WCET is better than the original one. We also show that compiler optimizations are beneficial for real-time systems.

Page generated in 0.0539 seconds