Spelling suggestions: "subject:"analyse d'images médicales"" "subject:"3analyse d'images médicales""
1 |
Modèles déformables pour la segmentation et la modélisation d'images médicales 3D et 4DMontagnat, Johan 09 December 1999 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'utilisation des modèles déformables surfaciques pour la segmentation d'images 3D et 4D. Dans un premier temps, nous nous sommes attachés à contraindre l'espace des déformations admissibles du modèle afin de rendre le processus de déformation plus fiable. Nous avons utilisé le formalisme des maillages simplexes pour exprimer des contraintes régularisantes de la surface. Nous avons développé un processus évolutif de déformation combinant une transformation globale ayant peu de degrés de liberté et un champ de déformations locales. Il permet de contrôler le nombre de degrés de liberté offerts au modèle surfacique de manière simple et efficace. Nous avons également cherché à enrichir la connaissance a priori des données apportée par le modèle. Nous utilisons des contraintes de forme pour faciliter la segmentation des structures à reconstruire, notamment dans les zones où les données de l'image sont bruitées ou lacunaires. Nous nous sommes également intéressés à la convergence formelle du processus de déformation. Nous avons développé un algorithme de changement de topologie des modèles discrets que nous avons comparé à l'approche par ensembles de niveaux. Dans un deuxième temps, nous nous sommes intéressés à la définition du terme d'attache aux données pour différents types d'images 3D. Nous avons envisagé plusieurs géométries rencontrées dans les images médicales. Nous avons étudié l'apport d'une information sur les régions ou sur la distribution des niveaux de gris de l'image pour la déformation ou le recalage multimodal d'un modèle. Finalement, nous nous sommes intéressés à la segmentation de séquences temporelles d'images cardiaques 2D ou 3D. La prise en compte de l'information temporelle permet d'introduire de nouvelles contraintes de déformations. Nous avons mis nos méthodes en pratique avec la segmentation d'images ou des séquences d'images cardiaques provenant de différentes modalités d'acquisition.
|
2 |
Modèles statistiques réduits de la croissance cardiaque, du mouvement et de la circulation sanguine : application à la tétralogie de FallotMcleod, Kristin 08 November 2013 (has links) (PDF)
Cette thèse présente les travaux réalisés en vue de l'élaboration d'un modèle cardiaque associant croissance, mouvement et circulation sanguine pour permettre ensuite la construction d'un modèle patient à partir d'un modèle de population. Le premier axe de ce travail est la simulation de la croissance bi-ventriculaire. Un modèle existant de surface unique, calculé à l'aide de méthodes statistiques, a été généralisé à un modèle bi-ventriculaire puis appliqué à la tétralogie de Fallot (ToF). Le deuxième axe concerne la modélisation du mouvement cardiaque au niveau de la population. Un modèle d'ordre réduit basé sur un modèle Polyaffine et LogDemons a été proposé. Il simule la dynamique cardiaque avec peu de paramètres. Les paramètres de transformation sont analysés par des méthodes statistiques. Un modèle de mouvement moyen a été calculé pour représenter le mouvement standard de la population. Le troisième axe s'intéresse à la simulation de l'écoulement sanguin à l'échelle de la population. La complexité des simulations spécifiques à un patient a été réduite grâce à l'utilisation de méthodes d'analyse d'image, de dynamique des fluides numérique et de réduction d'ordre de modèle. La simulation du flux sanguin dans l'artère pulmonaire pour des patients ToF a permis de mieux comprendre l'impact du sang régurgité sur la pression et la vitesse. Étant donné nos contributions sur ces trois axes, nous sommes maintenant en bonne position pour élaborer le modèle couplé des contributions interdépendantes de la croissance, du mouvement et de l'écoulement sanguin. Ce modèle pourrait être utilisé afin d'aider la planification de la thérapie chez les patients atteints de maladies cardiaques.
|
3 |
Study on the cerebrospinal fluid volumes / Étude des volumes du liquide cérébrospinalLebret, Alain 05 December 2013 (has links)
Cette thèse contribue au manque d'outils informatiques pour l'analyse d'images médicales et le diagnostic, en particulier en ce qui concerne l'étude des volumes du liquide cérébrospinal. La première partie concerne la mesure du volume des compartiments du liquide à partir d'images corps entier, pour une population composée d'adultes sains et de patients atteints d'hydrocéphalie. Les images sont obtenues à partir d'une séquence IRM développée récemment et mettant en évidence le liquide par rapport aux structures voisines, de manière à faciliter sa segmentation. Nous proposons une méthode automatique de segmentation et de séparation des volumes permettant une quantification efficace et reproductible. Le ratio des volumes des compartiments sous-arachnoïdien et ventriculaire est constant chez l'adulte sain, ce qui permet de conserver une pression intracrânienne stable. En revanche, il diminue et varie fortement chez les patients atteints d'hydrocéphalie. Ce ratio fournit un index physiologique fiable pour l'aide au diagnostic de la maladie. La seconde partie de la thèse est consacrée à l'analyse de la distribution du liquide dans le compartiment sous-arachnoïdien intracrânial supérieur. Il convient de souligner que ce compartiment, particulièrement complexe d'un point de vue anatomique, demeure peu étudié. Nous proposons deux techniques de visualisation de la distribution du volume liquidien contenu dans ce compartiment, qui produisent des images bidimensionnelles à partir des images d'origine. Ces images permettent de caractériser la distribution du volume liquidien et de son réseau, tout en distinguant les adultes sains des patients souffrant d'hydrocéphalie / This work aims to contribute to the lack of computational methods for medical image analysis and diagnosis about the study of cerebrospinal fluid volumes. In the first part, we focus on the volume assessment of the fluid spaces, from whole body images, in a population consisting of healthy adults and hydrocephalus patients. To help segmentation, these images, obtained from a recent "tissue-specific" magnetic resonance imaging sequence, highlight cerebrospinal fluid unlike its neigh borhood structures. We propose automatic segmentation and separation methods of the different spaces, which allow efficient and reproducible quantification. We show that the ratio of the total subarachnoid space volume to the ventricular one is a proportionality constant for healthy adults, to support a stable intracranial pressure. However, this ratio decreases and varies significantly among patients suffering from hydrocephalus. This ratio provides a reliable physiological index to help in the diagnosis of hydrocephalus. The second part of this work is dedicated to the fluid volume distribution analysis within the superior cortical subarachnoid space. Anatomical complexity of this space induces that it remains poorly studied. We propose two complementary methods to visualize the fluid volume distribution, and which both produce two-dimensional images from the original ones. These images, called relief maps, are used to characterize respectively, the fluid volume distribution and the fluid network, to classify healthy adults and patients with hydrocephalus, and to perform patient monitoring before and after surgery
|
4 |
Modèles statistiques réduits de la croissance cardiaque, du mouvement et de la circulation sanguine : application à la tétralogie de Fallot / Reduced-order statistical models of cardiac growth, motion and blood flow : application to the tetralogy of Fallot heartMcleod, Kristin 08 November 2013 (has links)
Cette thèse présente les travaux réalisés en vue de l’élaboration d’un modèle cardiaque associant croissance, mouvement et circulation sanguine pour permettre ensuite la construction d’un modèle patient à partir d’un modèle de population. Le premier axe de ce travail est la simulation de la croissance bi-ventriculaire. Un modèle existant de surface unique, calculé à l’aide de méthodes statistiques, a été généralisé à un modèle bi-ventriculaire puis appliqué à la tétralogie de Fallot (ToF). Le deuxième axe concerne la modélisation du mouvement cardiaque au niveau de la population. Un modèle d’ordre réduit basé sur un modèle Polyaffine et LogDemons a été proposé. Il simule la dynamique cardiaque avec peu de paramètres. Les paramètres de transformation sont analysés par des méthodes statistiques. Un modèle de mouvement moyen a été calculé pour représenter le mouvement standard de la population. Le troisième axe s'intéresse à la simulation de l’écoulement sanguin à l’échelle de la population. La complexité des simulations spécifiques à un patient a été réduite grâce à l’utilisation de méthodes d’analyse d’image, de dynamique des fluides numérique et de réduction d’ordre de modèle. La simulation du flux sanguin dans l’artère pulmonaire pour des patients ToF a permis de mieux comprendre l’impact du sang régurgité sur la pression et la vitesse. Étant donné nos contributions sur ces trois axes, nous sommes maintenant en bonne position pour élaborer le modèle couplé des contributions interdépendantes de la croissance, du mouvement et de l'écoulement sanguin. Ce modèle pourrait être utilisé afin d'aider la planification de la thérapie chez les patients atteints de maladies cardiaques. / This thesis presents work towards a coupled model of cardiac growth, motion, and blood flow to enable predictive patient-specific models to be built from a population-based model. The first axis of this work is to simulate bi-ventricular growth through aging. A previously proposed single surface model computed using statistical methods was extended to a bi-ventricular model and applied to Tetralogy of Fallot patients to model the complex evolution of the ventricles due to the pathology. The second axis concerns the development of a model to simulate cardiac motion at a population level. A reduced-order cardiac-specific motion model was proposed to simulate the motion dynamics with a small number of parameters using a Polyaffine and LogDemons based model. From the computed transformations, the parameters were analysed using statistical methods to obtain population-based measures of normality. A mean motion model was derived to represent the normal motion for a given population. The third axis is to develop a model of population-based flow dynamics. The complexity of patient-specific simulations was reduced by combining image analysis, computational fluid dynamics and model order reduction techniques. Blood flow through the pulmonary artery in Tetralogy of Fallot patients was simulated to better understand the impact of regurgitated blood on pressure and velocity. Given our contributions on these three axes, we are now in a good position to couple the models in order to capture the interrelated contributions of growth, motion and flow. Such a model could be used to aid in therapy planning and decision making for patients with heart disease.
|
5 |
Random Regression Forests for Fully Automatic Multi-Organ Localization in CT Images / Localisation automatique et multi-organes d'images scanner : utilisation de forêts d'arbres décisionnels (Random Regression Forests)Samarakoon, Prasad 30 September 2016 (has links)
La localisation d'un organe dans une image médicale en délimitant cet organe spécifique par rapport à une entité telle qu'une boite ou sphère englobante est appelée localisation d'organes. La localisation multi-organes a lieu lorsque plusieurs organes sont localisés simultanément. La localisation d'organes est l'une des étapes les plus cruciales qui est impliquée dans toutes les phases du traitement du patient à partir de la phase de diagnostic à la phase finale de suivi. L'utilisation de la technique d'apprentissage supervisé appelée forêts aléatoires (Random Forests) a montré des résultats très encourageants dans de nombreuses sous-disciplines de l'analyse d'images médicales. De même, Random Regression Forests (RRF), une spécialisation des forêts aléatoires pour la régression, ont produit des résultats de l'état de l'art pour la localisation automatique multi-organes.Bien que l'état de l'art des RRF montrent des résultats dans la localisation automatique de plusieurs organes, la nouveauté relative de cette méthode dans ce domaine soulève encore de nombreuses questions sur la façon d'optimiser ses paramètres pour une utilisation cohérente et efficace. Basé sur une connaissance approfondie des rouages des RRF, le premier objectif de cette thèse est de proposer une paramétrisation cohérente et automatique des RRF. Dans un second temps, nous étudions empiriquement l'hypothèse d'indépendance spatiale utilisée par RRF. Enfin, nous proposons une nouvelle spécialisation des RRF appelé "Light Random Regression Forests" pour améliorant l'empreinte mémoire et l'efficacité calculatoire. / Locating an organ in a medical image by bounding that particular organ with respect to an entity such as a bounding box or sphere is termed organ localization. Multi-organ localization takes place when multiple organs are localized simultaneously. Organ localization is one of the most crucial steps that is involved in all the phases of patient treatment starting from the diagnosis phase to the final follow-up phase. The use of the supervised machine learning technique called random forests has shown very encouraging results in many sub-disciplines of medical image analysis. Similarly, Random Regression Forests (RRF), a specialization of random forests for regression, have produced the state of the art results for fully automatic multi-organ localization.Although, RRF have produced state of the art results in multi-organ segmentation, the relative novelty of the method in this field still raises numerous questions about how to optimize its parameters for consistent and efficient usage. The first objective of this thesis is to acquire a thorough knowledge of the inner workings of RRF. After achieving the above mentioned goal, we proposed a consistent and automatic parametrization of RRF. Then, we empirically proved the spatial indenpendency hypothesis used by RRF. Finally, we proposed a novel RRF specialization called Light Random Regression Forests for multi-organ localization.
|
Page generated in 0.0858 seconds