• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Random Regression Forests for Fully Automatic Multi-Organ Localization in CT Images / Localisation automatique et multi-organes d'images scanner : utilisation de forêts d'arbres décisionnels (Random Regression Forests)

Samarakoon, Prasad 30 September 2016 (has links)
La localisation d'un organe dans une image médicale en délimitant cet organe spécifique par rapport à une entité telle qu'une boite ou sphère englobante est appelée localisation d'organes. La localisation multi-organes a lieu lorsque plusieurs organes sont localisés simultanément. La localisation d'organes est l'une des étapes les plus cruciales qui est impliquée dans toutes les phases du traitement du patient à partir de la phase de diagnostic à la phase finale de suivi. L'utilisation de la technique d'apprentissage supervisé appelée forêts aléatoires (Random Forests) a montré des résultats très encourageants dans de nombreuses sous-disciplines de l'analyse d'images médicales. De même, Random Regression Forests (RRF), une spécialisation des forêts aléatoires pour la régression, ont produit des résultats de l'état de l'art pour la localisation automatique multi-organes.Bien que l'état de l'art des RRF montrent des résultats dans la localisation automatique de plusieurs organes, la nouveauté relative de cette méthode dans ce domaine soulève encore de nombreuses questions sur la façon d'optimiser ses paramètres pour une utilisation cohérente et efficace. Basé sur une connaissance approfondie des rouages des RRF, le premier objectif de cette thèse est de proposer une paramétrisation cohérente et automatique des RRF. Dans un second temps, nous étudions empiriquement l'hypothèse d'indépendance spatiale utilisée par RRF. Enfin, nous proposons une nouvelle spécialisation des RRF appelé "Light Random Regression Forests" pour améliorant l'empreinte mémoire et l'efficacité calculatoire. / Locating an organ in a medical image by bounding that particular organ with respect to an entity such as a bounding box or sphere is termed organ localization. Multi-organ localization takes place when multiple organs are localized simultaneously. Organ localization is one of the most crucial steps that is involved in all the phases of patient treatment starting from the diagnosis phase to the final follow-up phase. The use of the supervised machine learning technique called random forests has shown very encouraging results in many sub-disciplines of medical image analysis. Similarly, Random Regression Forests (RRF), a specialization of random forests for regression, have produced the state of the art results for fully automatic multi-organ localization.Although, RRF have produced state of the art results in multi-organ segmentation, the relative novelty of the method in this field still raises numerous questions about how to optimize its parameters for consistent and efficient usage. The first objective of this thesis is to acquire a thorough knowledge of the inner workings of RRF. After achieving the above mentioned goal, we proposed a consistent and automatic parametrization of RRF. Then, we empirically proved the spatial indenpendency hypothesis used by RRF. Finally, we proposed a novel RRF specialization called Light Random Regression Forests for multi-organ localization.
2

Automatic Detection of Anatomical Landmarks in Three-Dimensional MRI

Järrendahl, Hannes January 2016 (has links)
Detection and positioning of anatomical landmarks, also called points of interest(POI), is often a concept of interest in medical image processing. Different measures or automatic image analyzes are often directly based upon positions of such points, e.g. in organ segmentation or tissue quantification. Manual positioning of these landmarks is a time consuming and resource demanding process. In this thesis, a general method for positioning of anatomical landmarks is outlined, implemented and evaluated. The evaluation of the method is limited to three different POI; left femur head, right femur head and vertebra T9. These POI are used to define the range of the abdomen in order to measure the amount of abdominal fat in 3D data acquired with quantitative magnetic resonance imaging (MRI). By getting more detailed information about the abdominal body fat composition, medical diagnoses can be issued with higher confidence. Examples of applications could be identifying patients with high risk of developing metabolic or catabolic disease and characterizing the effects of different interventions, i.e. training, bariatric surgery and medications. The proposed method is shown to be highly robust and accurate for positioning of left and right femur head. Due to insufficient performance regarding T9 detection, a modified method is proposed for T9 positioning. The modified method shows promises of accurate and repeatable results but has to be evaluated more extensively in order to draw further conclusions.

Page generated in 0.0756 seconds