• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Courbes et applications optimales à valeurs dans l'espace de Wasserstein / Optimal curves and mappings valued in the Wasserstein space

Lavenant, Hugo 24 May 2019 (has links)
L'espace de Wasserstein est l'ensemble des mesures de probabilité définies sur un domaine fixé et muni de la distance de Wasserstein quadratique. Dans ce travail, nous étudions des problèmes variationnels dans lesquels les inconnues sont des applications à valeurs dans l'espace de Wasserstein.Quand l'espace de départ est un segment, c'est-à-dire quand les inconnues sont des courbes à valeurs dans l'espace de Wasserstein, nous nous intéressons à des modèles où, en plus de l'action des courbes, des termes pénalisant les configurations de congestion sont présents. Nous développons des techniques permettant d'extraire de la régularité à partir de l'interaction entre l'évolution optimale de la densité (minimisation de l'action) et la pénalisation de la congestion, et nous les appliquons à l'étude des jeux à champ moyen et de la formulation variationelle des équations d'Euler.Quand l'espace de départ n'est plus seulement un segment mais un domaine de l'espace euclidien, nous considérons seulement le problème de Dirichlet, c'est-à-dire la minimisation de l'action (qui peut être appelée l'énergie de Dirichlet) parmi toutes les applications dont les valeurs sur le bord du domaine de départ sont fixées. Les solutions sont appelées les applications harmoniques à valeurs dans l'espace de Wasserstein. Nous montrons que les différentes définitions de l'énergie de Dirichlet présentes dans la littérature sont en fait équivalentes; que le problème de Dirichlet est bien posé sous des hypothèses assez faibles; que le principe de superposition est mis en échec lorsque l'espace de départ n'est pas un segment; que l'on peut formuler une sorte de principe du maximum; et nous proposons une méthode numérique pour calculer ces applications harmoniques. / The Wasserstein space is the space of probability measures over a given domain endowed with the quadratic Wasserstein distance. In this work, we study variational problems where the unknowns are mappings valued in the Wasserstein space. When the source space is a segment, i.e. when the unknowns are curves valued in the Wasserstein space, we are interested in models where, in addition to the action of the curves, there are some terms which penalize congested configurations. We develop techniques to extract regularity from the minimizers thanks to the interplay between optimal density evolution (minimization of the action) and penalization of congestion, and we apply them to the study of Mean Field Games and the variational formulation of the Euler equations. When the source space is no longer a segment but a domain of a Euclidean space, we consider only the Dirichlet problem, i.e. the minimization of the action (which can be called the Dirichlet energy) among mappings sharing a fixed value on the boundary of the source space. The solutions are called harmonic mappings valued in the Wasserstein space. We prove that the different definitions of the Dirichlet energy in the literature turn out to be equivalent; that the Dirichlet problem is well-posed under mild assumptions; that the superposition principle fails if the source space is no longer a segment; that a sort of maximum principle holds; and we provide a numerical method to compute these harmonic mappings.
2

Geodesics and PDE methods in transport models

Brasco, Lorenzo 11 October 2010 (has links) (PDF)
Cette thèse est dédiée à l'étude des problèmes de transport optimal, alternatifs au problème de Monge-Kantorovich : ils apparaissent naturellement dans des applications pratiques, telles que la conception des réseaux de transport optimal ou la modélisation des problèmes de circulation urbaine. En particulier, nous considérons des problèmes où le coût du transport a une dèpendance non linèaire de la masse : typiquement dans ce type de problèmes, le côut pour déplacer une masse $m$ pour une longueur $\ell$ est $\varphi(m)\, \ell$, où $\varphi$ est une fonction assignée, obtenant ainsi un coût total de type $\sum\varphi(m) \ell$. \par Deux cas importants sont abordés en détail dans ce travail : le cas où la fonction $\varphi$ est subadditive (transport branché), de sorte que la masse a intérêt à voyager ensemble, de manière à réduire le coût total; le cas où $\varphi$ est superadditive (transport congestionné), où au contraire, la masse tend à diffuser autant que possible. \par Dans le cas du transport branché, nous introduisons deux nouveaux modèles: dans le premièr, le transport est décrit par des courbes de mesures de probabilité que minimisent une fonctionnelle de type géodésique (avec un coefficient que pénalise le mesures qui ne sont pas atomiques). Le second est plus dans l'esprit de la formulation de Benamou et Brenier pour les distances de Wasserstein : en particulier, le transport est décrit par paires de ``courbe de mesures--champ de vitesse'', liées par l'équation de continuité, qui minimisent une énergie adéquate (non convexe). Pour les deux modèles, on démontre l'existence de configurations minimales et l'équivalence avec d'autres formulations existantes dans la littèrature. \par En ce qui concerne le cas du transport congestionné, nous passons en revue deux modèles déjà existants, afin de prouver leur équivalence: alors que le premier de ces modèles peut être considéré comme une approche Lagrangienne du problème et il a des liens intéressants avec des questions d'équilibre pour la circulation urbaine, le second est un problème d'optimisation convexe avec contraintes de divergence. \par La preuve de l'équivalence entre les deux modèles constitue le corps principal de la deuxième partie de cette thèse et contient différents éléments d'intérêt, y compris: la théorie des flots des champs de vecteurs peu réguliers (DiPerna-Lions), la construction de Dacorogna et Moser pour les applications de transport et en particulier les résultats de régularité (que nous prouvons ici) pour une équation elliptique très dégénérés, qui ne semble pas avoir été beaucoup étudiée.

Page generated in 0.0927 seconds