• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La représentation SSA: sémantique, analyses et implémentation dans GCC

Pop, Sebastian 12 1900 (has links) (PDF)
Le langage d'assignation statique unique, SSA, est l'une des représentations intermédiaires les plus communément utilisées dans les compilateurs industriels. Cependant l'intérêt de la communauté d'analyse statique de programmes est minime, un fait dû aux faibles fondations formelles du langage SSA. Cette thèse présente une sémantique dénotationelle du langage SSA, permettant des définitions formelles des analyses statiques du langage SSA en se basant sur les méthodes classiques de l'interprétation abstraite. D'un point de vue pratique, cette thèse présente l'implémentation des analyseurs statiques définis formellement dans un compilateur industriel, la Collection de Compilateurs GNU, GCC.
2

Analyse des pointeurs pour le langage C

Mensi, Amira 24 June 2013 (has links) (PDF)
Les analyses statiques ont pour but de déterminer les propriétés des programmes au moment de la compilation. Contrairement aux analyses dynamiques, le comportement exact du programme ne peut être connu. Par conséquent, on a recours à des approximations pour remédier à ce manque d'information. Malgré ces approximations, les analyses statiques permettent des optimisations et des transformations efficaces pour améliorer les performances des programmes. Parmi les premières analyses du processus d'optimisation figure l'analyse des pointeurs. Son but est d'analyser statiquement un programme en entrée et de fournir en résultat une approximation des emplacements mémoire vers lesquels pointent ses variables pointeurs. Cette analyse est considérée comme l'une des analyses de programmes les plus délicates et l'information qu'elle apporte est très précieuse pour un grand nombre d'autres analyses clientes. En effet, son résultat est nécessaire à d'autres optimisations, comme la propagation de constante, l'élimination du code inutile, le renommage des scalaires ainsi que la parallélisation automatique des programmes. L'analyse des pointeurs est très nécessaire pour l'exploitation du parallélisme présent dans les applications scientifiques écrites en C. Ceci est dû au fait que les tableaux, très présents dans ce type d'applications, sont accédés via les pointeurs. Il devient nécessaire d'analyser les dépendances entre les éléments de tableau dans le but de paralléliser les boucles. Le langage C présente beaucoup de difficultés lors de son analyse par la liberté qu'il offre aux utilisateurs pour gérer et manipuler la mémoire par le biais des pointeurs. Ces difficultés apparaissent par exemple lors de l'accès aux tableaux par pointeurs, l'allocation dynamique (via "malloc") ainsi que les structures de données récursives. L'un des objectifs principaux de cette thèse est de déterminer les emplacements mémoire vers lesquels les pointeurs pointent. Ceci se fait en assurant plusieurs dimensions comme : - la sensibilité au flot de contrôle, c'est-à-dire la mise à jour des informations d'un point programme à un autre ; - la non-sensibilité au contexte, c'est-à-dire l'utilisation de résumés au lieu de l'analyse du corps de la fonction à chaque appel ; - la modélisation des champs pointeurs des structures de données agrégées, dans laquelle chaque champ représente un emplacement mémoire distinct. D'autres aspects sont pris en compte lors de l'analyse des programmes écrits en C comme la précision des emplacements mémoire alloués au niveau du tas, l'arithmétique sur pointeurs ou encore les pointeurs vers tableaux. Notre travail permet l'amélioration des résultats des analyses clientes et en particulier il permet la parallélisation des boucles lorsqu'on accède aux éléments de tableaux via les pointeurs, la détection de code inutile ou le calcul du graphe de dépendances. Il est implémenté dans le compilateur parallélliseur PIPS (Parallélisation Interprocédurale de Programmes Scientifiques) et permet d'analyser, en particulier, les applications scientifiques de traitement du signal tout en assurant une analyse intraprocédurale précise et une analyse interprocédurale efficace via les résumés.
3

Finding inductive invariants using satisfiability modulo theories and convex optimization / Recherche d'invariants inductifs par satisfiabilité modulo théorie et optimisation convexe

Karpenkov, George Egor 29 March 2017 (has links)
L'analyse statique correcte d'un programme consiste à obtenir des propriétés vraies de toute exécution de ce programme. Celles-ci sont utiles pour démontrer des caractéristiques appréciables du logiciel, telles que l'absence de dépassement de capacité ou autre erreur à l'exécution quelle que soient les entrées du programme. Elles sont presque toujours établies à l'aide d'invariants inductifs : des propriétés vraies de l'état initial et telles que si elles sont vraies à une étape de calcul, alors elles restent vraies à l'étape suivante de la transition de calcul, donc sont toujours vraies par récurrence. L'interprétation abstraite est une approche traditionnelle de la recherche d'invariants numériques, que l'on peut exprimer comme une interprétation non-standard du programme dans un domaine abstrait choisi et ne tenant compte que de certaines propriétés intéressantes. Même dans un domaine aussi simple que les intervalles (un minorant et un majorant pour chaque variable), ce calcul ne converge pas nécessairement, et l'analyse doit recourir à des opérateurs d'élargissement pour forcer la convergence au détriment de la précision. Une autre approche, appelée itération de politique et inspirée par la théorie des jeux, garantit de trouver le plus fort invariant inductif dans le domaine abstrait choisi après un nombre fini d'itérations. Cependant, la description originale de cet algorithme souffrait de quelques faiblesses : elle se basait sur une conversion totale du programme en un système d'équations, sans intégration ni synergie avec les autres méthodes d'analyse. Notre nouvel algorithme est une forme locale de l'itération de politique, qui la replace dans l'itération de Kleene mais avec un opérateur d'élargissement spécial qui garantit d'obtenir le plus petit invariant inductif dans le domaine abstrait après un nombre fini de ses applications. L'itération de politique locale opère dans les domaines de contraintes linéaires données par patron, qui demandent de fixer d'avance la «forme» de l'invariant (p.ex. "x + 2y" pour obtenir "x + 2y <= 10" ). Notre seconde contribution théorique est le développement et la comparaison de plusieurs stratégies de synthèse de patrons, utilisées en conjonction avec l'itération locale de politiques. De plus, nous présentons une méthode pour générer des arbres d'accessibilité abstraite par interprétation abstraite, permettant la génération de traces de contre-exemples, et ensuite la génération de nouveaux patrons à partir d'interpolants de Craig. Notre troisième contribution concerne l'analyse interprocédurale de programmes, éventuellement récursifs. Nous proposons un algorithme qui génère pour chaque procédure un résumé, applicable à toute interprétation abstraite et notamment à l'itération de politique locale. Nous pouvons ainsi générer les invariants inductifs les plus forts dans le domaine pour un nombre fixé de résumés pour un programme récursif. Notre dernière contribution théorique est une méthode d'affaiblissement permettant de trouver des invariants inductifs, éventuellement disjonctifs, à partir de formules obtenues par exécution symbolique. Nous avons mis en œuvre toutes ces approches dans le système d'analyse statique CPAchecker, un logiciel libre, ce qui permet des communications et collaborations entre analyses. Nos techniques utilisent des résolveurs de satisfiabilité modulo théorie, capables, étant donné une formule de logique du premier ordre sur certaines théories, d'en donner un modèle ou de démontrer qu'aucun n'existe.Afin de simplifier les communications avec ces outils, nous présentons la bibliothèque JavaSMT, fournissant une interface générique. Cette bibliothèque a déjà démontré son utilité pour de nombreux chercheurs. / Static analysis concerns itself with deriving program properties which holduniversally for all program executions.Such properties are used for proving program properties (e.g. there neveroccurs an overflow or other runtime error regardless of a particular execution) and are almostinvariably established using inductive invariants: properties which holdfor the initial state and imply themselves under the program transition, and thushold universally due to induction.A traditional approach for finding numerical invariants is using abstractinterpretation, which can be seen as interpreting the program in the abstractdomain of choice, only tracking properties of interest.Yet even in the intervals abstract domain (upper and lower boundsfor each variable) such computation does not necessarily converge, and theanalysis has to resort to the use of widenings to enforceconvergence at the cost of precision.An alternative game-theoretic approach called policy iteration,guarantees to findthe least inductive invariant in the chosen abstract domain under the finitenumber of iterations.Yet the original description of the algorithm includes a number of drawbacks:it requires converting the entire program to an equation system,does not integrate with other approaches,and is unable to benefit from other analyses.Our new algorithm for running local policy iteration (LPI)instead formulates policy iteration as traditional Kleene iteration,with a widening operator that guarantees to return the least inductiveinvariant in the domain after finitely many applications.Local policy iteration runs in template linear constraint domains whichrequires setting in advance the ``shape'' of the derived invariant (e.g.$x + 2y$ for deriving $x + 2y leq 10$).Our second theoretical contribution involves development and comparison ofa number of different template synthesis strategies, when used in conjunctionwith LPI.Additionally, we present an approach for generating abstract reachabilitytrees using abstract interpretation,enabling the construction of counterexample traces,which in turns lets us generate new templates using Craig interpolants.In our third contribution we bring our attention to interprocedural andpotentially recursive programs.We develop an algorithm parameterizable with any abstract interpretation forsummary generation, and we study it's parameterization with LPI.The resulting approach is able to generate least inductive invariants in the domain for a fixed number of summaries for recursive programs.Our final theoretical contribution is a novel "formula slicing''method for finding potentially disjunctive inductive invariantsfrom program fragments obtained by symbolic execution.We implement all of these techniques in the open-source state-of-the-artCPAchecker program analysis framework, enabling communication and collaborationbetween different analyses.The techniques mentioned above rely onsatisfiability modulo theories solvers,which are capable ofgiving solutions tofirst-order formulas over certain theories or showingthat none exists.In order to simplify communication with such toolswe present the JavaSMT library, which provides a generic interface for suchcommunication.The library has shown itself to be a valuable tool, and is already used by manyresearchers.
4

Analyse des pointeurs pour le langage C / Points to analysis for the C language

Mensi, Amira 24 June 2013 (has links)
Les analyses statiques ont pour but de déterminer les propriétés des programmes au moment de la compilation. Contrairement aux analyses dynamiques, le comportement exact du programme ne peut être connu. Par conséquent, on a recours à des approximations pour remédier à ce manque d'information. Malgré ces approximations, les analyses statiques permettent des optimisations et des transformations efficaces pour améliorer les performances des programmes. Parmi les premières analyses du processus d'optimisation figure l'analyse des pointeurs. Son but est d'analyser statiquement un programme en entrée et de fournir en résultat une approximation des emplacements mémoire vers lesquels pointent ses variables pointeurs. Cette analyse est considérée comme l'une des analyses de programmes les plus délicates et l'information qu'elle apporte est très précieuse pour un grand nombre d'autres analyses clientes. En effet, son résultat est nécessaire à d'autres optimisations, comme la propagation de constante, l'élimination du code inutile, le renommage des scalaires ainsi que la parallélisation automatique des programmes. L'analyse des pointeurs est très nécessaire pour l'exploitation du parallélisme présent dans les applications scientifiques écrites en C. Ceci est dû au fait que les tableaux, très présents dans ce type d'applications, sont accédés via les pointeurs. Il devient nécessaire d'analyser les dépendances entre les éléments de tableau dans le but de paralléliser les boucles. Le langage C présente beaucoup de difficultés lors de son analyse par la liberté qu'il offre aux utilisateurs pour gérer et manipuler la mémoire par le biais des pointeurs. Ces difficultés apparaissent par exemple lors de l'accès aux tableaux par pointeurs, l'allocation dynamique (via «malloc») ainsi que les structures de données récursives. L'un des objectifs principaux de cette thèse est de déterminer les emplacements mémoire vers lesquels les pointeurs pointent. Ceci se fait en assurant plusieurs dimensions comme : - la sensibilité au flot de contrôle, c'est-à-dire la mise à jour des informations d'un point programme à un autre ; - la non-sensibilité au contexte, c'est-à-dire l'utilisation de résumés au lieu de l'analyse du corps de la fonction à chaque appel ; - la modélisation des champs pointeurs des structures de données agrégées, dans laquelle chaque champ représente un emplacement mémoire distinct. D'autres aspects sont pris en compte lors de l'analyse des programmes écrits en C comme la précision des emplacements mémoire alloués au niveau du tas, l'arithmétique sur pointeurs ou encore les pointeurs vers tableaux. Notre travail permet l'amélioration des résultats des analyses clientes et en particulier il permet la parallélisation des boucles lorsqu'on accède aux éléments de tableaux via les pointeurs, la détection de code inutile ou le calcul du graphe de dépendances. Il est implémenté dans le compilateur parallélliseur PIPS (Parallélisation Interprocédurale de Programmes Scientifiques) et permet d'analyser, en particulier, les applications scientifiques de traitement du signal tout en assurant une analyse intraprocédurale précise et une analyse interprocédurale efficace via les résumés. / Static analysis algorithms strive to extract the information necessary for the understanding and optimization of programs at compile time. The potential values of the variables of type pointer are the most difficult information to determine. This information is often used to assess if two pointers are potential aliases, i.e. if they can point to the same memory area. An analysis of pointers, also called points-to analysis, may provide more precision to other analyses such as constant propagation, analysis of dependencies or analysis of live variables. The analysis of pointers is very important for the exploitation of parallelism in scientific C programs since the most important structures they manipulate are arrays, which are typically accessed by pointers. It is necessary to analyse the dependencies between arrays in order to exploit the parallelism between loops. C language is very hard to analyse since it allows to users to manipulate the memory through pointers. These difficulties arise for example when accessing arrays by pointers, dynamic allocation (via "malloc") and recursive data structures. Points-to analysis may also attempt to handle recursive data structures and other structures that are accessed by pointers. This work provides a points-to analysis which is : - flow-sensitive, by taking into account the order of execution of instructions ; - field-sensitive, since structure fields are treated as individual locations ; - context-insensitive, because functions summaries are computed to avoid re-analyzing functions bodies. Other issues such as heap modeling, pointer arithmetics and pointers to arrays are also taken into account while analyzing C programs. Our intraprocedural analysis provides precise results to client analyses, in particular it allows parallelization when accessing the array elements loops via pointers, detecting useless code or computing the dependency graph. while our interprocedural one allows to propagate them efficiently. Our work is implemented within the PIPS (Parallélisation Interprocédurale de Programmes Scientifiques) parallelizer, a framework designed to analyze, optimize and parallelize scientific and signal processing applications. Keywords : static analysis, points-to analysis, flow-sensitive, context-insensitive, field-sensitive.

Page generated in 0.1667 seconds