• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation énergétique Convexe pour véhicule Hybride électrique : vers une solution analytique / Convex Energy Management for Hybrid Electric vehicle : towards an Analytical Solution

Hadj-Saïd, Souad 07 November 2018 (has links)
Cette thèse s'inscrit dans le cadre de la gestion d'énergie d'un Véhicule Hybride Électrique. Pour ce type de véhicule, l'optimisation énergétique est un enjeu majeur. Cela consiste à calculer les commandes optimales minimisant la consommation énergétique du véhicule sous un nombre fini de contraintes. Deux types de méthodes peuvent être utilisées pour résoudre ce problème d'optimisation. La première méthode et la plus utilisée, la méthode numérique, utilisant des modèles cartographiques basés sur des données. Elle présente deux inconvénients majeurs: temps de calcul et mémoire importants. La deuxième méthode, appelée analytique, qui permet de remédier à ces deux problèmes, a été utilisée dans cette thèse. Plus l'architecture du véhicule devient complexe (plusieurs machines électriques, moteur thermique, élévateur de tension), plus l'intérêt de cette approche sera important. La méthodologie analytique, proposée dans cette thèse, est composée principalement de trois étapes : la modélisation convexe, le calcul analytique des commandes et la validation des commandes analytiques sur un simulateur de véhicule. Cette méthodologie a été appliquée sur les trois configurations possibles du véhicule étudié : parallèle, bi-parallèle et série. Finalement, l'ajout de l'élévateur de tension dans la gestion d'énergie ainsi que l'étude de son impact sur la consommation énergétique du véhicule sont présentés dans le dernier chapitre. Les résultats obtenus en simulation montrent que la méthode analytique a permis de réduire considérablement le temps de calcul tout en ayant une sous-optimalité très faible. / This thesis focuses on the energy management of Hybrid Electric Vehicle. In this type of vehicle, energy optimization is a major challenge. It consists of calculating optimal commands that minimize the vehicle’s energy consumption under a finite number of constraints. The optimization issue could be solved using a digital method or an analytical method. This choice depends on the nature of energy models that monitor the optimization criteria: analytical or maps of experimental measurements. However, this method presents numerous disadvantages. Its calculation is extremely time-consuming for instance. Therefore, the works presented in this thesis were directed in order to develop an analytical solution where the calculation is lesstime consuming. The architecture of the vehicle is complex. In fact, the vehicle contains two electrical machines, a thermal engine and a step-up. These components have all a straight impact on the vehicle’s energy consumption so several optimization variables were defining. Consequently, working on an analytical solution was a natural choice. The proposed analytical methodology consists of three steps: convex modeling, the command analytical calculation as well as the analytical command validation on a vehicle simulator. This methodology was applied to three possible configurations of the studied vehicle: parallel, biparallel and in serial. Finally, the step-up addition to the energy management as well as the study of itsimpact on the vehicle’s energy consumption are presented in the last chapter. The simulation results show that the analytical method reduces considerably the computing time and has an extremely low suboptimality.

Page generated in 0.1099 seconds