• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 43
  • Tagged with
  • 316
  • 316
  • 303
  • 302
  • 74
  • 74
  • 72
  • 60
  • 55
  • 39
  • 38
  • 35
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Charged colloids observed by electrophoretic and diffusion NMR

Thyboll Pettersson, Erik January 2005 (has links)
The thesis deals partly with methodology including construction of hardware and new pulse sequences in the field of electrophoretic NMR, and partly with practical use of ENMR and diffusion NMR in the investigation of charged colloidal systems. Several sources of artefacts are investigated, including gas production at the electrodes, electroosmosis and Joule heating effects that can cause convection. The electrophoretic double stimulated-echo pulse sequence is introduced to suppress these artefacts and to increase the feasible measuring range to higher electric fields and conductivities. The interaction between the non-ionic polymer poly(ethylene oxide) PEO and differently charged surfactants is investigated using the above mentioned methods. The investigated surfactants are the anionic sodium dodecyl sulphate (SDS) and potassium laurate (KC12), the cationic dodecyltrimethylammonium bromide (CTAB) and the non-ionic octyl β-D-glucoside. ENMR is also used to investigate two different mixed micelle systems, with SDS as the charged surfactant component and dodecyl malono-bis-N-methylglucamide (C12BNMG) respectively tetra(ethylene oxide) dodecyl ether (C12EO4) as the nonionic surfactant component. A method to calculate the degree of counter-ion dissociation, αdissociation, as a function of composition is demonstrated. Finally diffusion NMR is used to compare transport dynamics in gel electrolyte systems based on two differently grafted polymers; one amphiphilic system containing polymethacrylate grafted partly with polyethylene oxide and partly with fluorocarbons and the corresponding nonamphiphilic system grafted with only polyethylene oxide. Both systems contain the electrolyte lithium bis(trifluoromethylsulfonyl) imide salt dissolved in γ-butyrolactone. The results show that the system based on the amphiphilic polymer has better transport dynamics and therefore is more suited as material for battery
72

Development of Sheathless Electrospray Mass Spectrometry and Investigations of Associated Electrochemical Processes – A Fairy Tale / Utveckling av lågflödeselektrospray-masspektrometri samt undersökningar av associerade elektrokemiska processer – en fésaga

Nilsson, Stefan January 2004 (has links)
In microscale separations, such as capillary electrophoresis and -liquid chromatography, the liquid flow rates are in the order of nanoliters per second. If such flow rates are to be interfaced with a mass spectrometer (MS) using electrospray (ES) ionization, without loss of separation efficiency, each fraction of the analyte zone must remain undisturbed by the high voltage contact necessary for ES. One design that accomplishes this is the pure sheathless approach, where a thin, vapor deposited metal film covers the outside of the electrospray emitter tip. This thesis describes the development of such sheathless emitters. The lifetimes of polymer embedded gold (“fairy dust”) or graphite (“black dust”) emitters were shown to by far exceed those of previously used conductive films. In addition, the production of emitters with these coatings was substantially simplified. The increase in durability was found to be due to enhanced resistance towards the electrochemical processes associated with ES. In analogy, the reasons for the limited durability of previously used methods were correlated with their tendency to oxidize, or be mechanically removed, during electrochemical reactions. Electrochemical processes associated with the electrospray potential were also found to seriously disturb analyses in which porous graphitic carbon was used as the separation medium. A proper choice of grounding point locations eliminated these disturbances. At last, the differences regarding analytical performance of several sheathless interface configurations, used in capillary liquid chromatography, were examined. The best performance was obtained when a pure sheathless emitter with a conductive layer of polyimide and graphite was coupled to the LC column through a Teflon sleeve.
73

Development of Methods for Protein and Peptide Analysis Applied in Neuroscience Utilizing Mass Spectrometry

Pierson, Johan January 2004 (has links)
This thesis describes the utilization of the matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and electrospray ionization (ESI) MS techniques for analysis of complex brain tissue samples. Direct molecular profiling of biological samples using MALDI MS is a powerful tool for identifying phenotypic markers. MALDI MS-profiling of proteins and peptides directly on brain tissue sections was used for the first time to study experimental models of Parkinson’s disease (PD). The mass spectrometer was used to map the peptide and protein expression directly on 12 µm tissue sections in mass-to-charge (m/z) values, providing the capability of mapping specific molecules of the original sample, that is, localization, intensity and m/z ratio. Several protein and peptide expression profile differences were found in the dopamine denervated brains when compared to the corresponding controls, for example, calmodulin, cytochrome c, cytochrome c oxidase, and the neuroimmunophilin protein FKBP-12. The increased expression of FKBP-12 from the profiling experiments was supported by mRNA expression analysis and two-dimensional gel electrophoresis separation analysis. Multiple genetic deficits have linked impaired ubiquitin-conjugation pathways to various forms of familiar PD. This study showed for the first time an increased level of unconjugated ubiquitin specifically in the dorsal striatum of the dopamine depleted PD brain. The strength of the MALDI MS-profiling technique is that a minimum of sample handling and manipulation is necessary pre-analysis. This ensures preservation of the spatial localization of the biomolecules in the tissue section. Biological liquid samples often contain high amounts of salt that is non-compatible with the ESI MS technique. A nano-flow capillary liquid chromatography (nanoLC) system coupled on-line with ESI-MS was used to study the metabolism of the peptide LVV-hemorphin-7 in the brain and blood using in vivo microdialysis. The microdialysis technique provides capabilities for very precise sampling in specific brain regions. The combination of on-line desalting and pre-concentration by nanoLC with ESI MS is a powerful tool to detect minute concentration of metabolic fragments and endogenous biomolecules. The utilization of mass spectrometry in neuroscience applications provides a uniquely advantageous tool for the analysis of complex biochemical events that underlie the pathological symptoms expressed in different disease states. Furthermore, the MALDI-MS profiling technique shows great potential for the future with regards to proteome analysis and drug discovery.
74

Studies of non-covalent interactions using nano-electrospray ionization mass spectrometry

Sundqvist, Gustav January 2004 (has links)
No description available.
75

Studies of non-covalent interactions using nano-electrospray ionization mass spectrometry

Sundqvist, Gustav January 2004 (has links)
No description available.
76

Porous polymeric materials for chromatography : Synthesis, functionalization and characterization

Byström, Emil January 2009 (has links)
Background: Separation science is heavily reliant on materials to fulfill ever more complicated demands raised by other areas of science, notably the rapidly expanding molecular biosciences and environmental monitoring. The key to successful separations lies in a combination of physical properties and surface chemistry of stationary phases used in liquid chromatographic separation, and this thesis address both aspects of novel separation materials. Methods: The thesis accounts for several approaches taken during the course of my graduate studies, and the main approaches have been i) to test a wild-grown variety of published methods for surface treatment of fused silica capillaries, to ascertain firm attachment of polymeric monoliths to the wall of microcolumns prepared in silica conduits; ii) developing a novel porogen scheme for organic monoliths including polymeric porogens and macromonomers; iii) evaluating a mesoporous styrenic monolith for characterization of telomers intended for use in surface modification schemes and; iv) to critically assess the validity of a common shortcut used for estimating the porosity of monoliths prepared in microconduits; and finally v) employing plasma chemistry for activating and subsequently modifying the surface of rigid, monodisperse particles prepared from divinylbenzene. Results: The efforts accounted for above have resulted in i) better knowledge of the etching and functionalization parameters that determine attachment of organic monoliths prepared by radical polymerization to the surface of silica; ii) polar methacrylic monoliths with a designed macroporosity that approaches the desired "connected rod" macropore morphology; iii) estab¬lishing the usefulness of monoliths prepared via nitroxide mediated polymerization in gradient polymer elution chromatography; iv) proving that scanning electron microscopy images are of limited value for assessing the macroporous properties of organic monoliths, and that pore measurements on externally polymerized monolith cocktails do not represent the porous properties of the same cocktail polymerized in narrow confinements; and v) showing that plasma bromination can be used as an activation step for rigid divinylbenzene particles to act as grafting handles for epoxy-containing telomers, that can be attached in a sufficiently dense layer and converted into carboxylate cation exchange layer that allows protein separations in fully aqueous eluents.
77

Modeling adsorption of organic compounds on activated carbon : a multivariate approach / Modellering av adsorption av organiska förreningar i aktivt kol : ett multivariat angreppssätt

Wu, Jufang January 2004 (has links)
Activated carbon is an adsorbent that is commonly used for removing organic contaminants from air due to its abundant pores and large internal surface area. This thesis is concerned with the static adsorption capacity and adsorption kinetics for single and binary organic compounds on different types of activated carbon. These are important parameters for the design of filters and for the estimation of filter service life. Existing predictive models for adsorption capacity and kinetics are based on fundamental “hard” knowledge of adsorption mechanisms. These models have several drawbacks, especially in complex situations, and extensive experimental data are often needed as inputs. In this work we present a systematic approach that can contribute to the further development of predictive models, especially for complex situations. The approach is based on Multivariate Data Analysis (MVDA), which is ideally suited for the development of soft models without incorporating any assumptions about the mathematical form or fundamental physical principles involved. Adsorption capacity and adsorption kinetics depend on the properties of the carbon and the adsorbate as well as experimental conditions. Therefore, to make general statements regarding adsorption capacity and kinetics it is important for the resulting models to be representative of the conditions they will simulate. Accordingly, the first step in the investigations underlying this thesis was to select a minimum number of representative and chemically diverse organic compounds. The next steps were to study the dependence of the derived affinity coefficient, β, in the Dubinin-Radushkevich equation on properties of organic compounds and to establish a new, improved model. This new model demonstrates the importance of adding descriptors for the specific interaction with the carbon surface to the size and shape descriptors. The adsorption capacities of the same eight organic compounds at low relative pressures were correlated with compound properties. It was found that different compound properties are important in the various stages of adsorption, reflecting the fact that different mechanisms are involved. Ideal adsorbed solution theory (IAST) in combination with the Freundlich equation was developed to predict the adsorption capacities of binary organic compound mixtures. A new model was proposed for predicting the rate coefficient of the Wheeler-Jonas equation which is valid for breakthrough ratios up to 20%. Finally, it was shown that the Wheeler-Jonas equation can be adapted to describe the breakthrough curves of binary mixtures. New models were proposed for predicting its parameters, the adsorption rate coefficients, and the adsorption capacities for both components of the binary mixture. Thus, multivariate data analysis can not only be used to assist in the understanding of adsorption mechanisms, but also contribute to the development of predictive models of adsorption capacity and breakthrough time for single and binary organic compounds.
78

Zwitterionic Separation Materials for Liquid Chromatography and Capillary Electrophoresis : Synthesis, Characterization and Application for Inorganic Ion and Biomolecule Separations

Jiang, Wen January 2003 (has links)
<p>Liquid Chromatography (LC) and Capillary Electrophoresis (CE) are modern analytical techniques that play very important roles in many areas of modern science such as life science, biotechnology, biomedicine, environmental studies, and development of pharmaceutics. Even though these two techniques have existed and been subjected to studies for several decades, the developments of new separation materials for them are still very important till now in order to meet the different new demands for improvement from other disciplines in science.</p><p>In this doctoral thesis, several novel covalently bonded sulfobetaine type zwitterionic separation materials are synthesized for the application in LC and CE. These materials carry both positively charged quaternary ammonium groups and negatively charged sulfonic groups, which result in a very low net surface charge compared to conventional separation materials with only anionic or cationic functional groups. Consequently, it is possible to employ these materials for separation of different ionic species under mild conditions. The surface properties have also been characterized, mainly by elemental analysis, sorption isotherm, ζ-potential measurements, and spectroscopic methods.</p><p>By using packed zwitterionic columns for liquid chromatography, small inorganic anions or cations, and acidic or basic proteins can be independently and simultaneously separated in a single run using optimal sets of separation conditions. This is a unique property compared to conventional ionic separation material for LC. When fused silica capillaries coated with zwitterionic polymer are used for capillary electrophoresis, good separations can be achieved for solutes as different as inorganic anions, peptides, proteins, and tryptically digested proteins.</p>
79

Modeling adsorption of organic compounds on activated carbon : A multivariate approach / Modellering av adsorption av organiska förreningar i aktivt kol : Ett multivariat angreppssätt

Wu, Jufang January 2004 (has links)
<p>Activated carbon is an adsorbent that is commonly used for removing organic contaminants from air due to its abundant pores and large internal surface area. This thesis is concerned with the static adsorption capacity and adsorption kinetics for single and binary organic compounds on different types of activated carbon. These are important parameters for the design of filters and for the estimation of filter service life. Existing predictive models for adsorption capacity and kinetics are based on fundamental “hard” knowledge of adsorption mechanisms. These models have several drawbacks, especially in complex situations, and extensive experimental data are often needed as inputs. In this work we present a systematic approach that can contribute to the further development of predictive models, especially for complex situations. The approach is based on Multivariate Data Analysis (MVDA), which is ideally suited for the development of soft models without incorporating any assumptions about the mathematical form or fundamental physical principles involved. </p><p>Adsorption capacity and adsorption kinetics depend on the properties of the carbon and the adsorbate as well as experimental conditions. Therefore, to make general statements regarding adsorption capacity and kinetics it is important for the resulting models to be representative of the conditions they will simulate. Accordingly, the first step in the investigations underlying this thesis was to select a minimum number of representative and chemically diverse organic compounds. The next steps were to study the dependence of the derived affinity coefficient, β, in the Dubinin-Radushkevich equation on properties of organic compounds and to establish a new, improved model. This new model demonstrates the importance of adding descriptors for the specific interaction with the carbon surface to the size and shape descriptors. The adsorption capacities of the same eight organic compounds at low relative pressures were correlated with compound properties. It was found that different compound properties are important in the various stages of adsorption, reflecting the fact that different mechanisms are involved. Ideal adsorbed solution theory (IAST) in combination with the Freundlich equation was developed to predict the adsorption capacities of binary organic compound mixtures. A new model was proposed for predicting the rate coefficient of the Wheeler-Jonas equation which is valid for breakthrough ratios up to 20%. Finally, it was shown that the Wheeler-Jonas equation can be adapted to describe the breakthrough curves of binary mixtures. New models were proposed for predicting its parameters, the adsorption rate coefficients, and the adsorption capacities for both components of the binary mixture. Thus, multivariate data analysis can not only be used to assist in the understanding of adsorption mechanisms, but also contribute to the development of predictive models of adsorption capacity and breakthrough time for single and binary organic compounds.</p>
80

Development of Field-adapted Analytical Methods for the Determination of New Antimalarial Drugs in Biological Fluids

Lindegårdh, Niklas January 2003 (has links)
<p>This thesis deals with the development of analytical methods for the determination of new antimalarial drugs in biological fluids. The goal was to develop methods that facilitate clinical studies performed in the field, such as capillary blood sampling onto sampling paper.</p><p>Methods for the determination of atovaquone (ATQ) in plasma, whole blood and capillary blood applied onto sampling paper were developed and validated. </p><p>Automated solid-phase extraction (SPE) and liquid chromatography (LC) with UV absorbance detection was used to quantify ATQ. Venous blood contained higher levels of ATQ than capillary blood after a single dose of Malarone (ATQ + proguanil).</p><p>Ion-pairing LC was used to separate amodiaquine (AQ), chloroquine (CQ) and their metabolites on a CN-column. A method for quantification of AQ, CQ and their metabolites in capillary blood applied onto sampling paper was developed and validated. Perchloric acid and acetonitrile were used to facilitate the extraction of the analytes from the sampling paper. The liquid extract was further cleaned by SPE.</p><p>Methods for the determination of piperaquine (PQ) in plasma and whole blood using SPE and LC were developed and validated. Addition of trichloroacetic acid (TCA) to the samples prior to injection into the LC-system significantly enhanced the efficiency for the PQ peak. Serum and whole blood contained higher levels (about 300 nM) of PQ than plasma (about 200 nM) after a single oral dose of 340 mg PQ. This indicates that PQ may be taken up in the leucocytes and thrombocytes.</p>

Page generated in 0.089 seconds