Spelling suggestions: "subject:"anchorage independent"" "subject:"anchorages independent""
1 |
Role of PERK in Anchorage-Independent Growth of Colorectal Carcinoma and Cell Migration In-VitroShukla, Madhura Shirish 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The unfolded protein response (UPR) is important for cell adaptation to accumulation of unfolded proteins in the endoplasmic reticulum (ER). A central UPR sensor of ER stress is PKR- like ER Kinase (PERK), which phosphorylates eIF2 to reduce global translation and help mitigate ER stress. While this is a survival mechanism that serves to save the cell from catastrophic events during ER stress, PERK can also be activated in cancer cells due to genetic changes and exposure to stresses inherent in the tumor micro-environment. Published reports have indicated that PERK is activated in cancer cells in response to hypoxia, nutrient deprivation, matrix detachment, and increased protein load by oncogene activation to facilitate cell survival. The UPR features PERK and another ER stress sensory protein, IRE1α, which also regulates the dynamic assembly of the actin cytoskeleton; loss of either PERK or IRE1α functions decrease cell migration activity. We hypothesized that PERK is required for anchorage-independent survival of the cancer cell line HCT116 and that PERK is essential for cell migration. Consistent with these premises, inhibition of PERK using pharmacological inhibitors GSK2656157 and LY-4 in suspended cells showed reduced growth. Furthermore, PERK-deficient cells showed reduced migration in transwell migration assays as compared to their wild type counterpart. These results suggest that PERK facilitates anchorage-independent growth of cancer cells and cell migration.
|
2 |
The Effect of hsa-miR-105 on Prostate Cancer GrowthHoneywell, David R 07 December 2012 (has links)
Micro (mi)RNAs have recently been found to play an important role in cancer biology. In order to further understand how miRNAs affect prostate tumour progression, we evaluated miRNA expression in two invasive prostate tumour lines, PC3 and DU145. We then focused our evaluation on a novel miRNA, miR-105, whose levels were significantly decreased in both tumour cell lines as compared to normal prostate epithelial cells. As miR-105 levels were reduced in prostate tumour cell lines, we restored its expression following transfection of cells with mimic constructs to over-express miR-105 in both cell lines, in order to determine its effect on various tumourigenic properties. Over-expression caused decreased tumour cell proliferation, anchorage-independent growth and invasion in vitro and inhibited tumour growth in vivo. We further identified CDK6 as a putative target of miR-105, which likely contributed to its inhibition of tumour cell growth. Our results suggest that miR-105 inhibits tumour cell proliferation and may be an interesting target to regulate tumour growth or potentially used as a biomarker to differentiate between less and more aggressive tumours in patients.
|
3 |
The Effect of hsa-miR-105 on Prostate Cancer GrowthHoneywell, David R 07 December 2012 (has links)
Micro (mi)RNAs have recently been found to play an important role in cancer biology. In order to further understand how miRNAs affect prostate tumour progression, we evaluated miRNA expression in two invasive prostate tumour lines, PC3 and DU145. We then focused our evaluation on a novel miRNA, miR-105, whose levels were significantly decreased in both tumour cell lines as compared to normal prostate epithelial cells. As miR-105 levels were reduced in prostate tumour cell lines, we restored its expression following transfection of cells with mimic constructs to over-express miR-105 in both cell lines, in order to determine its effect on various tumourigenic properties. Over-expression caused decreased tumour cell proliferation, anchorage-independent growth and invasion in vitro and inhibited tumour growth in vivo. We further identified CDK6 as a putative target of miR-105, which likely contributed to its inhibition of tumour cell growth. Our results suggest that miR-105 inhibits tumour cell proliferation and may be an interesting target to regulate tumour growth or potentially used as a biomarker to differentiate between less and more aggressive tumours in patients.
|
4 |
The Effect of hsa-miR-105 on Prostate Cancer GrowthHoneywell, David R January 2012 (has links)
Micro (mi)RNAs have recently been found to play an important role in cancer biology. In order to further understand how miRNAs affect prostate tumour progression, we evaluated miRNA expression in two invasive prostate tumour lines, PC3 and DU145. We then focused our evaluation on a novel miRNA, miR-105, whose levels were significantly decreased in both tumour cell lines as compared to normal prostate epithelial cells. As miR-105 levels were reduced in prostate tumour cell lines, we restored its expression following transfection of cells with mimic constructs to over-express miR-105 in both cell lines, in order to determine its effect on various tumourigenic properties. Over-expression caused decreased tumour cell proliferation, anchorage-independent growth and invasion in vitro and inhibited tumour growth in vivo. We further identified CDK6 as a putative target of miR-105, which likely contributed to its inhibition of tumour cell growth. Our results suggest that miR-105 inhibits tumour cell proliferation and may be an interesting target to regulate tumour growth or potentially used as a biomarker to differentiate between less and more aggressive tumours in patients.
|
Page generated in 0.0997 seconds